254,568 research outputs found

    An investigation into computer support for cooperative work in software engineering groups

    Get PDF
    The research of this thesis relates to Computer Supported Cooperative Work (CSCW) in the context of software engineering, and in particular software engineering education. Whilst research into group working has tended to be directed towards CSCW, very little research has been undertaken on group working within software engineering. Linked with CSCW is groupware, which is the class of tools that supports and augments groupwork. This thesis represents an attempt to contribute to the understanding of the groupware needs of software engineers, and to identify and trial groupware that supports software engineering activities. An infrastructure has been developed providing virtual environments, for use by both collocated and geographically distributed software engineering students, to support their groupwork. This infrastructure comprises of synchronous and asynchronous groupware, in the form of desktop video conferencing, and a shared information workspace. This shared workspace has been tailored from the groupware tool, Basic Support for Cooperative Work (BSCW).Within this thesis, hypotheses have been formulated as to the student use of these virtual environments. These hypotheses concentrate on the areas of: organisation and coordination of tasks, the level of cooperation that occurs within the phases of the software lifecycle, the usage of the functions within a shared workspace, and what importance is placed on the role of synchronous communication within software engineering student groupwork. Through a series of case studies it was possible to determine the outcome of these hypotheses using various data collection methods. These methods include questionnaires, focus group meetings, observations, and automatic monitoring of workspace activities. The outcomes of this thesis are that the hypotheses regarding organisation and coordination, and, the role of synchronous communication within software engineering, have been proved. Whilst the determination of the level of cooperation during the phases of the software lifecycle has not been proved, the use of functions within the shared workspace has been partly proved

    Holistic analysis of the effectiveness of a software engineering teaching approach

    Get PDF
    To provide the best training in software engineering, several approaches and strategies are carried out. Some of them are more theoretical, learned through books and manuals, while others have a practical focus and often done in collaboration with companies. In this paper, we share an approach based on a balanced mix to foster the assimilation of knowledge, the approximation with what is done in software companies and student motivation. Two questionnaires were also carried out, one involving students, who had successfully completed the subject in past academic years (some had already graduated, and others are still students), and other questionnaire involving companies, in the field of software development, which employ students from our school. The analysis of the perspectives of the different stakeholders allows an overall and holistic) view, and a general understanding, of the effectiveness of the software engineering teaching approach. We analyse the results of the questionnaires and share some of the experiences and lessons learned.info:eu-repo/semantics/publishedVersio

    Student teamwork: developing virtual support for team projects

    Get PDF
    In the 21st century team working increasingly requires online cooperative skills as well as more traditional skills associated with face to face team working. Virtual team working differs from face to face team working in a number of respects, such as interpreting the alternatives to visual cues, adapting to synchronous communication, developing trust and cohesion and cultural interpretations. However, co-located student teams working within higher education can only simulate team working as it might be experienced in organisations today. For example, students can learn from their mistakes in a non-threatening environment, colleagues tend to be established friends and assessing teamwork encourages behaviour such as “free-riding”. Using a prototyping approach, which involves students and tutors, a system has been designed to support learners engaged in team working. This system helps students to achieve to their full potential and appreciate issues surrounding virtual teamwork. The Guardian Agent system enables teams to allocate project tasks and agree ground rules for the team according to individuals’ preferences. Results from four cycles of its use are presented, together with modifications arising from iterations of testing. The results show that students find the system useful in preparing for team working, and have encouraged further development of the system

    USAge of Groupware in Software Engineering Education at the Cscw Laboratory of University Duisburg-essen: Possibilities and Limitations

    Full text link
    This paper analyzes the application level in CSCW laboratory there are Electronic meeting rooms, Video Conferencing, Desktop Conference (Passenger), and BSCW system which conducting in The University Duisburg – Essen Germany. This analysis included short analysis and discussion about possibilities and limitation of each experiment followed by outlook how this lab can be further developed.Multi-user to Multipoint Videoconferences is introduced to cover all of devices join to the conferences. A computer network, PSTN (Public Switched Telephone Network), ISDN Phone, Wireless Infrastructures (accessed by laptop, smart phone, PDA) and videoconferences systems is proposed to be integrate

    Invest to Save: Report and Recommendations of the NSF-DELOS Working Group on Digital Archiving and Preservation

    Get PDF
    Digital archiving and preservation are important areas for research and development, but there is no agreed upon set of priorities or coherent plan for research in this area. Research projects in this area tend to be small and driven by particular institutional problems or concerns. As a consequence, proposed solutions from experimental projects and prototypes tend not to scale to millions of digital objects, nor do the results from disparate projects readily build on each other. It is also unclear whether it is worthwhile to seek general solutions or whether different strategies are needed for different types of digital objects and collections. The lack of coordination in both research and development means that there are some areas where researchers are reinventing the wheel while other areas are neglected. Digital archiving and preservation is an area that will benefit from an exercise in analysis, priority setting, and planning for future research. The WG aims to survey current research activities, identify gaps, and develop a white paper proposing future research directions in the area of digital preservation. Some of the potential areas for research include repository architectures and inter-operability among digital archives; automated tools for capture, ingest, and normalization of digital objects; and harmonization of preservation formats and metadata. There can also be opportunities for development of commercial products in the areas of mass storage systems, repositories and repository management systems, and data management software and tools.

    Evaluating groupware support for software engineering students

    Get PDF
    Software engineering tasks, during both development and maintenance, typically involve teamwork using computers. Team members rarely work on isolated computers. An underlying assumption of our research is that software engineering teams will work more effectively if adequately supported by network-based groupware technology. Experience of working with groupware and evaluating groupware systems will also give software engineering students a direct appreciation of the requirements of engineering such systems. This research is investigating the provision of such network-based support for software engineering students and the impact these tools have on their groupwork. We will first describe our experiences gained through the introduction of an asynchronous virtual environment ­ SEGWorld to support groupwork during the Software Engineering Group (SEG) project undertaken by all second year undergraduates within the Department of Computer Science. Secondly we will describe our Computer Supported Cooperative Work (CSCW) module which has been introduced into the students' final year of study as a direct result of our experience with SEG, and in particular its role within Software Engineering. Within this CSCW module the students have had the opportunity to evaluate various groupware tools. This has enabled them to take a retrospective view of their experience of SEGWorld and its underlying system, BSCW, one year on. We report our findings for SEG in the form of a discussion of the hypotheses we formulated on how the SEGs would use SEGWorld, and present an initial qualitative assessment of student feedback from the CSCW module

    Cloud-Based Collaborative 3D Modeling to Train Engineers for the Industry 4.0

    Get PDF
    In the present study, Autodesk Fusion 360 software (which includes the A360 environment) is used to train engineering students for the demands of the industry 4.0. Fusion 360 is a tool that unifies product lifecycle management (PLM) applications and 3D-modeling software (PDLM—product design and life management). The main objective of the research is to deepen the students’ perception of the use of a PDLM application and its dependence on three categorical variables: PLM previous knowledge, individual practices and collaborative engineering perception. Therefore, a collaborative graphic simulation of an engineering project is proposed in the engineering graphics subject at the University of La Laguna with 65 engineering undergraduate students. A scale to measure the perception of the use of PDLM is designed, applied and validated. Subsequently, descriptive analyses, contingency graphical analyses and non-parametric analysis of variance are performed. The results indicate a high overall reception of this type of experience and that it helps them understand how professionals work in collaborative environments. It is concluded that it is possible to respond to the demand of the industry needs in future engineers through training programs of collaborative 3D modeling environments

    Exploring collaboration patterns among global software development teams.

    Get PDF
    This study examines communication behaviors in global software student teams. The authors of the paper characterize the types of communication behaviors that occur when student teams are engaged in a software development project. The authors present findings from a one-semester study that examined factors contributing to successful distributed programming interactions among students enrolled at the University of Atilim (Turkey), Universidad TecnolĂłgica de PanamĂĄ, University of North Texas, and Middlesex University (UK). Using content and cluster analyses techniques, we identified distinct patterns of collaboration and examined how these patterns were associated with task, culture, GPA, and performance of collaborative teams. Our results suggest that communication patterns among global software learners may be related to task type, culture and GPA. It is hoped that these findings will lead to the development of new strategies for improving communication among global software teams

    Using a wiki to facilitate learning on a Requirements Engineering course

    Get PDF
    In this paper, we describe the introduction of a wiki for collaborative activities in a Requirements Engineering course offered at a distance to part-time learners. The paper describes the course and how wiki activities were incorporated. The paper then discusses the initial feedback from the students which shows that the wiki has been largely effective for developing students' understanding of the course concepts, the effectiveness of team working in Requirements Engineering and the use of wikis in practice. However, there are particular issues related to asynchronous working in distance education/eLearning that need to be better addressed. We conclude with a discussion of how we are tackling these issues and developing the use of the wiki on the course based on the students' feedba
    • 

    corecore