758 research outputs found

    Mesh based and Hybrid Multicast routing protocols for MANETs: Current State of the art

    Get PDF
    This paper discusses various multicast routing protocols which are proposed in the recent past each having its own unique characteristic, with a motive of providing a complete understanding of these multicast routing protocols and present the scope of future research in this field. Further, the paper specifically discusses the current development in the development of mesh based and hybrid multicasting routing protocols. The study of this paper addresses the solution of most difficult task in Multicast routing protocols for MANETs under host mobility which causes multi-hop routing which is even more severe with bandwidth limitations. The Multicast routing plays a substantial part in MANETs

    Supporting Protocols for Structuring and Intelligent Information Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The goal of this dissertation is the presentation of supporting protocols for structuring and intelligent data dissemination in vehicular ad hoc networks (VANETs). The protocols are intended to first introduce a structure in VANETs, and thus promote the spatial reuse of network resources. Segmenting a flat VANET in multiple cluster structures allows for more efficient use of the available bandwidth, which can effectively increase the capacity of the network. The cluster structures can also improve the scalability of the underlying communication protocols. The structuring and maintenance of the network introduces additional overhead. The aim is to provide a mechanism for creating stable cluster structures in VANETs, and to minimize this associated overhead. Further a hybrid overlay-based geocast protocol for VANETs is presented. The protocol utilizes a backbone overlay virtual infrastructure on top of the physical network to provide geocast support, which is crucial for intervehicle communications since many applications provide group-oriented and location-oriented services. The final contribution is a structureless information dissemination scheme which creates a layered view of road conditions with a diminishing resolution as the viewing distance increases. Namely, the scheme first provides a high-detail local view of a given vehicle\u27s neighbors and its immediate neighbors, which is further extended when information dissemination is employed. Each vehicle gets aggregated information for road conditions beyond this extended local view. The scheme allows for the preservation of unique reports within aggregated frames, such that safety critical notifications are kept in high detail, all for the benefit of the driver\u27s improved decision making during emergency scenarios

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Performance Enhancement of Routing in MANETs by using EOMD

    Get PDF
    Usually large scale of network applications requires communication of the single copy of same information packets simultaneously to many destinations. Applying the infrastructure- based multicast routing protocols in Mobile Ad hoc wireless Networks (MANETs) is a big challenge task. The circumstances that make Multicasting in ad hoc networks is extra intricate than in wired networks are node mobility, Interference of Wi-Fi alerts and broadcast nature of the communication. Tree based Protocols aren't suitable for common topology modifications as an excessive amount of overhead for updating the filter information and additionally no longer suitable for partition or isolation. The major impact of routing for multi-hop MANETs comes due to mobility of the node, as performance is prone to modifications in network topology. When any link breaks, the direction should be repaired or changed, similar to direction preservation or route discovery, respectively. The rerouting process charges in radio bandwidth and battery energy, and the extra routing latency can also affect QoS for community packages, degrading communication performance. The ODMRP is more robust to mobility and unreliable wireless links as its core layout relies on periodic floods of path discovery and renovation. ODMRP periodically reconstructs the ?forwarding mesh? on a fixed quick interval. The path refresh is the most essential parameter because it has the important effect at the protocol overhead. We proposed an Extended - On Demand Multicast Routing Protocol with motion detection (EOMD), which reduces communication overhead and performance improvisation in mobile Ad-Hoc Network in Mobility

    1 A Performance Comparison Study of Ad Hoc Wireless Multicast Protocols

    Get PDF
    Abstract—In this paper we investigate the performance of multicast routing protocols in wireless mobile ad hoc networks. An ad hoc network is composed of mobile nodes without the presence of a wired support infrastructure. In this environment, routing/multicasting protocols are faced with the challenge of producing multihop routes under host mobility and bandwidth constraints. In recent years, a number of new multicast protocols of different styles have been proposed for ad hoc networks. However, systematic performance evaluations and comparative analysis of these protocols in a common realistic environment has not yet been performed. In this study, we simulate a set of representative wireless ad hoc multicast protocols and evaluate them in various network scenarios. The relative strengths, weaknesses, and applicability of each multicast protocol to diverse situations are studied and discussed. I

    A receiver-initiated soft-state probabilistic multicasting protocol in wireless ad hoc networks

    Get PDF
    A novel Receiver-Initiated Soft-State Probabilistic multicasting protocol (RISP) for mobile ad hoc network is proposed in this paper. RISP introduces probabilistic forwarding and soft-state for making relay decisions. Multicast members periodically initiate control packets, through which intermediate nodes adjust the forwarding probability. With a probability decay function (soft-state), routes traversed by more control packets are reinforced, while the less utilized paths are gradually relinquished. In this way, RISP can adapt to node mobility: at low mobility, RISP performs similar to a tree-based protocol; at high mobility, it produces a multicast mesh in the network. Simulation results show RISP has lower delivery redundancy than meshbased protocols, while achieving higher delivery ratio. Further, the control overhead is lower than other compared protocols. © 2005 IEEE.published_or_final_versio

    Position-Based Multicast Routing for Mobile Ad-Hoc Networks

    Full text link
    In this paper we present Position-Based Multicast (PBM), a multicast routing algorithm for mobile ad-hoc networks which does neither require the maintenance of a distribution structure (e.g., a tree or a mesh) nor resorts to flooding of data packets. Instead a forwarding node uses information about the positions of the destinations and its own neighbors to determine the next hops that the packet should be forwarded to and is thus very well suited for highly dynamic networks. PBM is a generalization of existing position-based unicast routing protocols such as face-2 or GPSR. The key contributions of PBM are rules for the splitting of multicast packets and a repair strategy for situations where there exists no direct neighbor that makes progress toward one or more destinations. The characteristics of PBM are evaluated in detail by means of simulation

    A receiver-initiated soft-state probabilistic multicasting protocol in wireless ad hoc networks

    Get PDF
    A novel Receiver-Initiated Soft-State Probabilistic multicasting protocol (RISP) for mobile ad hoc network is proposed in this paper. RISP introduces probabilistic forwarding and soft-state for making relay decisions. Multicast members periodically initiate control packets, through which intermediate nodes adjust the forwarding probability. With a probability decay function (soft-state), routes traversed by more control packets are reinforced, while the less utilized paths are gradually relinquished. In this way, RISP can adapt to node mobility: at low mobility, RISP performs similar to a tree-based protocol; at high mobility, it produces a multicast mesh in the network. Simulation results show RISP has lower delivery redundancy than meshbased protocols, while achieving higher delivery ratio. Further, the control overhead is lower than other compared protocols. © 2005 IEEE.published_or_final_versio
    corecore