8,368 research outputs found

    Distributed flow-based scheduling in multi-hop ad hoc networks

    Get PDF
    Shared channel contention-based MAC protocols, such as IEEE 802.11, are popular in ad hoc networks because of their ease of implementation. However, these contention-based MAC protocols do not coordinate between nodes at different hops within a multi-hop flow. This results in channel resource and node transmission power wastage and overall system throughput degradation. In this paper we present a novel distributed flow-based scheduling (DFBS) scheme that coordinates between neighbor links of a multi-hop flow. As demonstrated by the simulation results, DFBS achieves higher throughput and improves the transmission efficiency when traffic load is relatively high.published_or_final_versio

    Hop-Based dynamic fair scheduler for wireless Ad-Hoc networks

    Get PDF
    In a typical multihop Ad-Hoc network, interference and contention increase when flows transit each node towards destination, particularly in the presence of cross-traffic. This paper observes the relationship between throughput and path length, self-contention and interference and it investigates the effect of multiple data rates over multiple data flows in the network. Drawing from the limitations of the 802.11 specification, the paper proposes a scheduler named Hop Based Multi Queue (HBMQ), which is designed to prioritise traffic based on the hop count of packets in order to provide fairness across different data flows. The simulation results demonstrate that HBMQ performs better than a Single Drop Tail Queue (SDTQ) scheduler in terms of providing fairness. Finally, the paper concludes with a number of possible directions for further research, focusing on cross-layer implementation to ensure the fairness is also provided at the MAC layer. © 2013 IEEE

    Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks

    Get PDF
    This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of “layering as optimization decomposition” for time-varying channel models

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    Towards a System Theoretic Approach to Wireless Network Capacity in Finite Time and Space

    Get PDF
    In asymptotic regimes, both in time and space (network size), the derivation of network capacity results is grossly simplified by brushing aside queueing behavior in non-Jackson networks. This simplifying double-limit model, however, lends itself to conservative numerical results in finite regimes. To properly account for queueing behavior beyond a simple calculus based on average rates, we advocate a system theoretic methodology for the capacity problem in finite time and space regimes. This methodology also accounts for spatial correlations arising in networks with CSMA/CA scheduling and it delivers rigorous closed-form capacity results in terms of probability distributions. Unlike numerous existing asymptotic results, subject to anecdotal practical concerns, our transient one can be used in practical settings: for example, to compute the time scales at which multi-hop routing is more advantageous than single-hop routing

    JiTS: Just-in-Time Scheduling for Real-Time Sensor Data Dissemination

    Full text link
    We consider the problem of real-time data dissemination in wireless sensor networks, in which data are associated with deadlines and it is desired for data to reach the sink(s) by their deadlines. To this end, existing real-time data dissemination work have developed packet scheduling schemes that prioritize packets according to their deadlines. In this paper, we first demonstrate that not only the scheduling discipline but also the routing protocol has a significant impact on the success of real-time sensor data dissemination. We show that the shortest path routing using the minimum number of hops leads to considerably better performance than Geographical Forwarding, which has often been used in existing real-time data dissemination work. We also observe that packet prioritization by itself is not enough for real-time data dissemination, since many high priority packets may simultaneously contend for network resources, deteriorating the network performance. Instead, real-time packets could be judiciously delayed to avoid severe contention as long as their deadlines can be met. Based on this observation, we propose a Just-in-Time Scheduling (JiTS) algorithm for scheduling data transmissions to alleviate the shortcomings of the existing solutions. We explore several policies for non-uniformly delaying data at different intermediate nodes to account for the higher expected contention as the packet gets closer to the sink(s). By an extensive simulation study, we demonstrate that JiTS can significantly improve the deadline miss ratio and packet drop ratio compared to existing approaches in various situations. Notably, JiTS improves the performance requiring neither lower layer support nor synchronization among the sensor nodes

    PACE: Simple Multi-hop Scheduling for Single-radio 802.11-based Stub Wireless Mesh Networks

    Get PDF
    IEEE 802.11-based Stub Wireless Mesh Networks (WMNs) are a cost-effective and flexible solution to extend wired network infrastructures. Yet, they suffer from two major problems: inefficiency and unfairness. A number of approaches have been proposed to tackle these problems, but they are too restrictive, highly complex, or require time synchronization and modifications to the IEEE 802.11 MAC. PACE is a simple multi-hop scheduling mechanism for Stub WMNs overlaid on the IEEE 802.11 MAC that jointly addresses the inefficiency and unfairness problems. It limits transmissions to a single mesh node at each time and ensures that each node has the opportunity to transmit a packet in each network-wide transmission round. Simulation results demonstrate that PACE can achieve optimal network capacity utilization and greatly outperforms state of the art CSMA/CA-based solutions as far as goodput, delay, and fairness are concerned
    • 

    corecore