916 research outputs found

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    Fast, Accurate and Detailed NoC Simulations

    Get PDF
    Network-on-Chip (NoC) architectures have a wide variety of parameters that can be adapted to the designer's requirements. Fast exploration of this parameter space is only possible at a high-level and several methods have been proposed. Cycle and bit accurate simulation is necessary when the actual router's RTL description needs to be evaluated and verified. However, extensive simulation of the NoC architecture with cycle and bit accuracy is prohibitively time consuming. In this paper we describe a simulation method to simulate large parallel homogeneous and heterogeneous network-on-chips on a single FPGA. The method is especially suitable for parallel systems where lengthy cycle and bit accurate simulations are required. As a case study, we use a NoC that was modelled and simulated in SystemC. We simulate the same NoC on the described FPGA simulator. This enables us to observe the NoC behavior under a large variety of traffic patterns. Compared with the SystemC simulation we achieved a speed-up of 80-300, without compromising the cycle and bit level accuracy

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft

    Virtual lines, a deadlock free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable to fulfil these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel fifos, each representing a virtual line. In this way we not only have solved the problem of Head Of Line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual lines concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology

    Design and implementation of the Quarc network on-chip

    Get PDF
    Networks-on-Chip (NoC) have emerged as alternative to buses to provide a packet-switched communication medium for modular development of large Systems-on-Chip. However, to successfully replace its predecessor, the NoC has to be able to efficiently exchange all types of traffic including collective communications. The latter is especially important for e.g. cache updates in multicore systems. The Quarc NoC architecture has been introduced as a Networks-on-Chip which is highly efficient in exchanging all types of traffic including broadcast and multicast. In this paper we present the hardware implementation of the switch architecture and the network adapter (transceiver) of the Quarc NoC. Moreover, the paper presents an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs implemented in Verilog targeting the Xilinx Virtex FPGA family. We demonstrate a dramatic improvement in performance over the Spidergon especially for broadcast traffic, at no additional hardware cost
    • 

    corecore