613 research outputs found

    Distributed estimation and control of node centrality in undirected asymmetric networks

    Full text link
    Measures of node centrality that describe the importance of a node within a network are crucial for understanding the behavior of social networks and graphs. In this paper, we address the problems of distributed estimation and control of node centrality in undirected graphs with asymmetric weight values. In particular, we focus our attention on α\alpha-centrality, which can be seen as a generalization of eigenvector centrality. In this setting, we first consider a distributed protocol where agents compute their α\alpha-centrality, focusing on the convergence properties of the method; then, we combine the estimation method with a consensus algorithm to achieve a consensus value weighted by the influence of each node in the network. Finally, we formulate an α\alpha-centrality control problem which is naturally decoupled and, thus, suitable for a distributed setting and we apply this formulation to protect the most valuable nodes in a network against a targeted attack, by making every node in the network equally important in terms of {\alpha}-centrality. Simulations results are provided to corroborate the theoretical findings.Comment: published on IEEE Transactions on Automatic Control https://ieeexplore.ieee.org/abstract/document/912618

    Dynamic max-consensus with local self-tuning

    Get PDF
    This work describes a novel control protocol for multi-agent systems to solve the dynamic max-consensus problem. In this problem, each agent has access to an external timevarying scalar signal and has the objective to estimate and track the maximum among all these signals by exploiting only local communications. The main strength of the proposed protocol is that it is able to self-tune its internal parameters in order to achieve an arbitrary small steady-state error without significantly affecting the convergence time. We employ the proposed protocol in the context of distributed graph parameter estimations, such as size, diameter, and radius, and provide simulations in the scenario of open multi-agent systems. Copyright (C) 2022 The Authors

    An Integrated Building Method Based On Robotic Winding

    Get PDF

    A Distributed Asynchronous Method of Multipliers for Constrained Nonconvex Optimization

    Get PDF
    This paper presents a fully asynchronous and distributed approach for tackling optimization problems in which both the objective function and the constraints may be nonconvex. In the considered network setting each node is active upon triggering of a local timer and has access only to a portion of the objective function and to a subset of the constraints. In the proposed technique, based on the method of multipliers, each node performs, when it wakes up, either a descent step on a local augmented Lagrangian or an ascent step on the local multiplier vector. Nodes realize when to switch from the descent step to the ascent one through an asynchronous distributed logic-AND, which detects when all the nodes have reached a predefined tolerance in the minimization of the augmented Lagrangian. It is shown that the resulting distributed algorithm is equivalent to a block coordinate descent for the minimization of the global augmented Lagrangian. This allows one to extend the properties of the centralized method of multipliers to the considered distributed framework. Two application examples are presented to validate the proposed approach: a distributed source localization problem and the parameter estimation of a neural network.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0648

    Distributed Finite-Time Cooperative Localization for Three-Dimensional Sensor Networks

    Full text link
    This paper addresses the distributed localization problem for a network of sensors placed in a three-dimensional space, in which sensors are able to perform range measurements, i.e., measure the relative distance between them, and exchange information on a network structure. First, we derive a necessary and sufficient condition for node localizability using barycentric coordinates. Then, building on this theoretical result, we design a distributed localizability verification algorithm, in which we propose and employ a novel distributed finite-time algorithm for sum consensus. Finally, we develop a distributed localization algorithm based on conjugate gradient method, and we derive a theoretical guarantee on its performance, which ensures finite-time convergence to the exact position for all localizable nodes. The efficiency of our algorithm compared to the existing ones from the state-of-the-art literature is further demonstrated through numerical simulations.Comment: 39 pages, 7 figures, under revie

    Penetrated circular hollow section X-joints in steel

    Get PDF
    • …
    corecore