6,143 research outputs found

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Combating False Reports for Secure Networked Control in Smart Grid via Trustiness Evaluation

    Full text link
    Smart grid, equipped with modern communication infrastructures, is subject to possible cyber attacks. Particularly, false report attacks which replace the sensor reports with fraud ones may cause the instability of the whole power grid or even result in a large area blackout. In this paper, a trustiness system is introduced to the controller, who computes the trustiness of different sensors by comparing its prediction, obtained from Kalman filtering, on the system state with the reports from sensor. The trustiness mechanism is discussed and analyzed for the Linear Quadratic Regulation (LQR) controller. Numerical simulations show that the trustiness system can effectively combat the cyber attacks to smart grid.Comment: It has been submitted to IEEE International Conference on Communications (ICC

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    An Optimal Transmission Strategy for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgements

    Get PDF
    This paper presents a novel design methodology for optimal transmission policies at a smart sensor to remotely estimate the state of a stable linear stochastic dynamical system. The sensor makes measurements of the process and forms estimates of the state using a local Kalman filter. The sensor transmits quantized information over a packet dropping link to the remote receiver. The receiver sends packet receipt acknowledgments back to the sensor via an erroneous feedback communication channel which is itself packet dropping. The key novelty of this formulation is that the smart sensor decides, at each discrete time instant, whether to transmit a quantized version of either its local state estimate or its local innovation. The objective is to design optimal transmission policies in order to minimize a long term average cost function as a convex combination of the receiver's expected estimation error covariance and the energy needed to transmit the packets. The optimal transmission policy is obtained by the use of dynamic programming techniques. Using the concept of submodularity, the optimality of a threshold policy in the case of scalar systems with perfect packet receipt acknowledgments is proved. Suboptimal solutions and their structural results are also discussed. Numerical results are presented illustrating the performance of the optimal and suboptimal transmission policies.Comment: Conditionally accepted in IEEE Transactions on Control of Network System

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    corecore