44 research outputs found

    SIoTFog: Byzantine-resilient IoT fog networking

    Get PDF
    The current boom in the Internet of Things (IoT) is changing daily life in many ways, from wearable devices to connected vehicles and smart cities. We used to regard fog computing as an extension of cloud computing, but it is now becoming an ideal solution to transmit and process large-scale geo-distributed big data. We propose a Byzantine fault-tolerant networking method and two resource allocation strategies for IoT fog computing. We aim to build a secure fog network, called “SIoTFog,” to tolerate the Byzantine faults and improve the efficiency of transmitting and processing IoT big data. We consider two cases, with a single Byzantine fault and with multiple faults, to compare the performances when facing different degrees of risk. We choose latency, number of forwarding hops in the transmission, and device use rates as the metrics. The simulation results show that our methods help achieve an efficient and reliable fog network

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Volume 1 – Symposium: Tuesday, March 8

    Get PDF
    Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Components:Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Component

    Applications of Power Electronics:Volume 2

    Get PDF

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    The Federal Conference on Intelligent Processing Equipment

    Get PDF
    Research and development projects involving intelligent processing equipment within the following U.S. agencies are addressed: Department of Agriculture, Department of Commerce, Department of Energy, Department of Defense, Environmental Protection Agency, Federal Emergency Management Agency, NASA, National Institutes of Health, and the National Science Foundation

    On-Board Electronic Control Systems of Future Automated Heavy Machinery

    Get PDF
    The level of automation and wireless communication has increased in heavy machinery recently. This requires utilizing new devices and communication solutions in heavy machinery applications which involve demanding operating conditions and challenging life-cycle management. Therefore, the applied devices have to be robust and hardware architectures flexible, consisting of generic modules. In research and development projects devices that have various communication interfaces and insufficient mechanical and electrical robustness need to be applied. Although this thesis has its main focus on machines utilized as research platforms, many of the challenges are similar with commercial machines.The applicability of typical solutions for data transfer is discussed. Controller area network with a standardized higher level protocol is proposed to be applied where data signalling rates above 1 Mb/s are not required. The main benefits are the availability of robust, generic devices and well-established software tools for configuration management. Ethernet can be utilized to network equipment with high data rates, typically used for perception. Although deterministic industrial Ethernet protocols would fulfil most requirements, the conventional internet protocol suite is likely to be applied due to device availability.Sometimes sensors and other devices without a suitable communication interface need to be applied. In addition, device-related real-time processing or accurate synchronization of hardware signals may be required. A small circuit board with a microcontroller can be utilized as a generic embedded module for building robust, small and cost-efficient prototype devices that have a controller area network interface. Although various microcontroller boards are commercially available, designing one for heavy machinery applications, in particular, has benefits in robustness, size, interfaces, and flexible software development. The design of such a generic embedded module is presented.The device-specific challenges of building an automated machine are discussed. Unexpected switch-off of embedded computers has to be prevented by the control system to avoid file system errors. Moreover, the control system has to protect the batteries against deep discharge when the engine is not running. With many devices, protective enclosures with heating or cooling are required.The electronic control systems of two automated machines utilized as research platforms are presented and discussed as examples. The hardware architectures of the control systems are presented, following the proposed communication solutions as far as is feasible. Several applications of the generic embedded module within the control systems are described. Several research topics have been covered utilizing the automated machines. In this thesis, a cost-efficient operator-assisting functionality of an excavator is presented and discussed in detail.The results of this thesis give not only research institutes but also machine manufacturers and their subcontractors an opportunity to streamline the prototyping of automated heavy machinery

    Volume II: Mining Innovation

    Get PDF
    Contemporary exploitation of natural raw materials by borehole, opencast, underground, seabed, and anthropogenic deposits is closely related to, among others, geomechanics, automation, computer science, and numerical methods. More and more often, individual fields of science coexist and complement each other, contributing to lowering exploitation costs, increasing production, and reduction of the time needed to prepare and exploit the deposit. The continuous development of national economies is related to the increasing demand for energy, metal, rock, and chemical resources. Very often, exploitation is carried out in complex geological and mining conditions, which are accompanied by natural hazards such as rock bursts, methane, coal dust explosion, spontaneous combustion, water, gas, and temperature. In order to conduct a safe and economically justified operation, modern construction materials are being used more and more often in mining to support excavations, both under static and dynamic loads. The individual production stages are supported by specialized computer programs for cutting the deposit as well as for modeling the behavior of the rock mass after excavation in it. Currently, the automation and monitoring of the mining works play a very important role, which will significantly contribute to the improvement of safety conditions. In this Special Issue of Energies, we focus on innovative laboratory, numerical, and industrial research that has a positive impact on the development of safety and exploitation in mining
    corecore