184 research outputs found

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted

    On leaderless consensus of fractional-order nonlinear multi-agent systems via event-triggered control

    Get PDF
    The consensus problem of fractional-order multi-agent systems is investigated by eventtriggered control in this paper. Based on the graph theory and the Lyapunov functional approach, the conditions for guaranteeing the consensus are derived. Then, according to some basic theories of fractional-order differential equation and some properties of Mittag–Leffler function, the Zeno behavior could be excluded. Finally, a simulation example is given to check the effectiveness of the theoretical result

    Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism

    Get PDF
    summary:This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm

    Event-Triggered Consensus and Formation Control in Multi-Agent Coordination

    Get PDF
    The focus of this thesis is to study distributed event-triggered control for multi-agent systems (MASs) facing constraints in practical applications. We consider several problems in the field, ranging from event-triggered consensus with information quantization, event-triggered edge agreement under synchronized/unsynchronized clocks, event-triggered leader-follower consensus with Euler-Lagrange agent dynamics and cooperative event-triggered rigid formation control. The first topic is named as event-triggered consensus with quantized relative state measurements. In this topic, we develop two event-triggered controllers with quantized relative state measurements to achieve consensus for an undirected network where each agent is modelled by single integrator dynamics. Both uniform and logarithmic quantizers are considered, which, together with two different controllers, yield four cases of study in this topic. The quantized information is used to update the control input as well as to determine the next trigger event. We show that approximate consensus can be achieved by the proposed algorithms and Zeno behaviour can be completely excluded if constant offsets with some computable lower bounds are added to the trigger conditions. The second topic considers event-triggered edge agreement problems. Two cases, namely the synchronized clock case and the unsynchronized clock case, are studied. In the synchronized clock case, all agents are activated simultaneously to measure the relative state information over edge links under a global clock. Edge events are defined and their occurrences trigger the update of control inputs for the two agents sharing the link. We show that average consensus can be achieved with our proposed algorithm. In the unsynchronized clock case, each agent executes control algorithms under its own clock which is not synchronized with other agents' clocks. An edge event only triggers control input update for an individual agent. It is shown that all agents will reach consensus in a totally asynchronous manner. In the third topic, we propose three different distributed event-triggered control algorithms to achieve leader-follower consensus for a network of Euler-Lagrange agents. We firstly propose two model-independent algorithms for a subclass of Euler-Lagrange agents without the vector of gravitational potential forces. A variable-gain algorithm is employed when the sensing graph is undirected; algorithm parameters are selected in a fully distributed manner with much greater flexibility compared to all previous work concerning event-triggered consensus problems. When the sensing graph is directed, a constant-gain algorithm is employed. The control gains must be centrally designed to exceed several lower bounding inequalities which require limited knowledge of bounds on the matrices describing the agent dynamics, bounds on network topology information and bounds on the initial conditions. When the Euler-Lagrange agents have dynamics which include the vector of gravitational potential forces, an adaptive algorithm is proposed. This requires more information about the agent dynamics but allows for the estimation of uncertain agent parameters. The last topic discusses cooperative stabilization control of rigid formations via an event-triggered approach. We first design a centralized event-triggered formation control system, in which a central event controller determines the next triggering time and broadcasts the event signal to all the agents for control input update. We then build on this approach to propose a distributed event control strategy, in which each agent can use its local event trigger and local information to update the control input at its own event time. For both cases, the trigger condition, event function and trigger behaviour are discussed in detail, and the exponential convergence of the formation system is guaranteed

    Simultaneous Estimation of Vehicle Sideslip and Roll Angles Using an Event-Triggered-Based IoT Architecture

    Get PDF
    In recent years, there has been a significant integration of advanced technology into the automotive industry, aimed primarily at enhancing safety and ride comfort. While a notable proportion of these driver-assist systems focuses on skid prevention, insufficient attention has been paid to addressing other crucial scenarios, such as rollovers. The accurate estimation of slip and roll angles plays a vital role in ensuring vehicle control and safety, making these parameters essential, especially with the rise of modern technologies that incorporate networked communication and distributed computing. Furthermore, there exists a lag in the transmission of information between the various vehicle systems, including sensors, actuators, and controllers. This paper outlines the design of an IoT architecture that accurately estimates the sideslip angle and roll angle of a vehicle, while addressing network transmission delays with a networked control system and an event-triggered communication scheme. Experimental results are presented to validate the performance of the IoT architecture proposed. The event-triggered scheme of the IoT solution is used to decrease data transmission and prevent network overload.Funding. Grant [ PID2022-136468OB-I00 ] funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”

    Distributed control based on evolutionary game theory: multi-agent experiment

    Get PDF
    In this Master's thesis are applied distributed consensus and game theoretical algorithms to control a population of agents. The agents are embodies by Lego Mindstorm robots and controlled remotely with Bluetooth by the PC. Using a platform implemented in LabVIEW, which includes a camera and a pattern recognition tool, the robots are controlled to perform different tasks such as convergence to consensus position and formatio

    Event-triggered filtering and fault estimation for nonlinear systems with stochastic sensor saturations

    Get PDF
    This paper is concerned with the filtering problem for a class of nonlinear systems with stochastic sensor saturations and event-triggered measurement transmissions. An event-triggered transmission scheme is proposed with hope to ease the traffic burden and improve the energy efficiency. The measurements are subject to randomly occurring sensor saturations governed by Bernoulli-distributed sequences. Special effort is made to obtain an upper bound of the filtering error covariance in the presence of linearisation errors, stochastic sensor saturations as well as event-triggered transmissions. A filter is designed to minimise the obtained upper bound at each time step by solving two sets of Riccati-like matrix equations, and thus the recursive algorithm is suitable for online computation. Sufficient conditions are established under which the filtering error is exponentially bounded in mean square. The applicability of the presented method is demonstrated by dealing with the fault estimation problem. An illustrative example is exploited to show the effectiveness of the proposed algorithm.This work was supported by the National Natural Science Foundation of China [grant number 61490701], [grant number 61522309], [grant number 61290324], [grant number 61473163], [grant number 61273156], Research Fund for the Taishan Scholar Project of Shandong Province of China, Tsinghua University Initiative Scientific Research Program, and Jiangsu Provincial Key Laboratory of E-business at Nanjing University of Finance and Economics of China [grant number JSEB201301]
    • …
    corecore