344 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Physical Layer Security in Integrated Sensing and Communication Systems

    Get PDF
    The development of integrated sensing and communication (ISAC) systems has been spurred by the growing congestion of the wireless spectrum. The ISAC system detects targets and communicates with downlink cellular users simultaneously. Uniquely for such scenarios, radar targets are regarded as potential eavesdroppers which might surveil the information sent from the base station (BS) to communication users (CUs) via the radar probing signal. To address this issue, we propose security solutions for ISAC systems to prevent confidential information from being intercepted by radar targets. In this thesis, we firstly present a beamformer design algorithm assisted by artificial noise (AN), which aims to minimize the signal-to-noise ratio (SNR) at the target while ensuring the quality of service (QoS) of legitimate receivers. Furthermore, to reduce the power consumed by AN, we apply the directional modulation (DM) approach to exploit constructive interference (CI). In this case, the optimization problem is designed to maximize the SINR of the target reflected echoes with CI constraints for each CU, while constraining the received symbols at the target in the destructive region. Apart from the separate functionalities of radar and communication systems above, we investigate sensing-aided physical layer security (PLS), where the ISAC BS first emits an omnidirectional waveform to search for and estimate target directions. Then, we formulate a weighted optimization problem to simultaneously maximize the secrecy rate and minimize the Cram\'er-Rao bound (CRB) with the aid of the AN, designing a beampattern with a wide main beam covering all possible angles of targets. The main beam width of the next iteration depends on the optimal CRB. In this way, the sensing and security functionalities provide mutual benefits, resulting in the improvement of mutual performances with every iteration of the optimization, until convergence. Overall, numerical results show the effectiveness of the ISAC security designs through the deployment of AN-aided secrecy rate maximization and CI techniques. The sensing-assisted PLS scheme offers a new approach for obtaining channel information of eavesdroppers, which is treated as a limitation of conventional PLS studies. This design gains mutual benefits in both single and multi-target scenarios

    RIS-Aided Cell-Free Massive MIMO Systems for 6G: Fundamentals, System Design, and Applications

    Full text link
    An introduction of intelligent interconnectivity for people and things has posed higher demands and more challenges for sixth-generation (6G) networks, such as high spectral efficiency and energy efficiency, ultra-low latency, and ultra-high reliability. Cell-free (CF) massive multiple-input multiple-output (mMIMO) and reconfigurable intelligent surface (RIS), also called intelligent reflecting surface (IRS), are two promising technologies for coping with these unprecedented demands. Given their distinct capabilities, integrating the two technologies to further enhance wireless network performances has received great research and development attention. In this paper, we provide a comprehensive survey of research on RIS-aided CF mMIMO wireless communication systems. We first introduce system models focusing on system architecture and application scenarios, channel models, and communication protocols. Subsequently, we summarize the relevant studies on system operation and resource allocation, providing in-depth analyses and discussions. Following this, we present practical challenges faced by RIS-aided CF mMIMO systems, particularly those introduced by RIS, such as hardware impairments and electromagnetic interference. We summarize corresponding analyses and solutions to further facilitate the implementation of RIS-aided CF mMIMO systems. Furthermore, we explore an interplay between RIS-aided CF mMIMO and other emerging 6G technologies, such as next-generation multiple-access (NGMA), simultaneous wireless information and power transfer (SWIPT), and millimeter wave (mmWave). Finally, we outline several research directions for future RIS-aided CF mMIMO systems.Comment: 30 pages, 15 figure

    A Dual-Function Massive MIMO Uplink OFDM Communication and Radar Architecture

    Get PDF
    This paper proposes a joint uplink massive multiple-input-multiple-output (MIMO) communication and orthogonal frequency-division multiplexing (OFDM) radar sensing architecture. Specifically, uplink communication and short-range radar sensing are considered, where the user equipments (UEs) transmit data to the base-station (BS), which simultaneously receives radar returns from the targets over the same subcarriers. Hence, the signals received at each BS antenna include radar returns and communication signals to be processed for extracting the sensing and communication data. The separation and detection of such signals are achieved by utilizing the channel diversity between the UEs and the targets. To this end, the UEs' signals are first detected and demodulated, and then subtracted from the received signal to acquire the radar returns. Symbol-based radar processing is then employed, as it provides substantial processing gains, and its detection performance is independent of the transmitted radar waveform. Furthermore, self-interference - due to the simultaneous operation of transmit and receive antennas - is taken into account. The communication rate and normalized error of the radar-target channel estimation are mathematically analyzed, and the trade-off between the achievable rate and radar detection performance is demonstrated in terms of the output power of the communication and radar sub-systems and the signal-to-noise ratio

    A Survey on Fundamental Limits of Integrated Sensing and Communication

    Get PDF
    The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed

    Wireless communication, sensing, and REM: A security perspective

    Get PDF
    The diverse requirements of next-generation communication systems necessitate awareness, flexibility, and intelligence as essential building blocks of future wireless networks. The awareness can be obtained from the radio signals in the environment using wireless sensing and radio environment mapping (REM) methods. This is, however, accompanied by threats such as eavesdropping, manipulation, and disruption posed by malicious attackers. To this end, this work analyzes the wireless sensing and radio environment awareness mechanisms, highlighting their vulnerabilities and provides solutions for mitigating them. As an example, the different threats to REM and its consequences in a vehicular communication scenario are described. Furthermore, the use of REM for securing communications is discussed and future directions regarding sensing/REM security are highlighted

    Secure Intelligent Reflecting Surface Aided Integrated Sensing and Communication

    Full text link
    In this paper, an intelligent reflecting surface (IRS) is leveraged to enhance the physical layer security of an integrated sensing and communication (ISAC) system in which the IRS is deployed to not only assist the downlink communication for multiple users, but also create a virtual line-of-sight (LoS) link for target sensing. In particular, we consider a challenging scenario where the target may be a suspicious eavesdropper that potentially intercepts the communication-user information transmitted by the base station (BS). We investigate the joint design of the phase shifts at the IRS and the communication as well as radar beamformers at the BS to maximize the sensing beampattern gain towards the target, subject to the maximum information leakage to the eavesdropping target and the minimum signal-to-interference-plus-noise ratio (SINR) required by users. Based on the availability of perfect channel state information (CSI) of all involved user links and the accurate target location at the BS, two scenarios are considered and two different optimization algorithms are proposed. For the ideal scenario where the CSI of the user links and the target location are perfectly known at the BS, a penalty-based algorithm is proposed to obtain a high-quality solution. In particular, the beamformers are obtained with a semi-closed-form solution using Lagrange duality and the IRS phase shifts are solved for in closed form by applying the majorization-minimization (MM) method. On the other hand, for the more practical scenario where the CSI is imperfect and the target location is uncertain, a robust algorithm based on the S\cal S-procedure and sign-definiteness approaches is proposed. Simulation results demonstrate the effectiveness of the proposed scheme in achieving a trade-off between the communication quality and the sensing quality.Comment: This paper has been submitted to IEEE journal for possible publicatio
    corecore