4,273 research outputs found

    Joint Wireless Information and Energy Transfer with Reduced Feedback in MIMO Interference Channels

    Full text link
    To determine the transmission strategy for joint wireless information and energy transfer (JWIET) in the MIMO interference channel (IFC), the information access point (IAP) and energy access point (EAP) require the channel state information (CSI) of their associated links to both the information-decoding (ID) mobile stations (MSs) and energy-harvesting (EH) MSs (so-called local CSI). In this paper, to reduce th e feedback overhead of MSs for the JWIET in two-user MIMO IFC, we propose a Geodesic energy beamforming scheme that requires partial CSI at the EAP. Furthermore, in the two-user MIMO IFC, it is proved that the Geodesic energy beamforming is the optimal strategy. By adding a rank-one constraint on the transmit signal covariance of IAP, we can further reduce the feedback overhead to IAP by exploiting Geodesic information beamforming. Under the rank-one constraint of IAP's transmit signal, we prove that Geodesic information/energy beamforming approach is the optimal strategy for JWIET in the two-user MIMO IFC. We also discuss the extension of the proposed rank-one Geodesic information/energy beamforming strategies to general K-user MIMO IFC. Finally, by analyzing the achievable rate-energy performance statistically under imperfect partial CSIT, we propose an adaptive bit allocation strategy for both EH MS and ID MS.Comment: accepted to IEEE Journal of Selected Areas in Communications (IEEE JSAC), Special Issue on Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfe

    Energy Beamforming with One-Bit Feedback

    Full text link
    Wireless energy transfer (WET) has attracted significant attention recently for providing energy supplies wirelessly to electrical devices without the need of wires or cables. Among different types of WET techniques, the radio frequency (RF) signal enabled far-field WET is most practically appealing to power energy constrained wireless networks in a broadcast manner. To overcome the significant path loss over wireless channels, multi-antenna or multiple-input multiple-output (MIMO) techniques have been proposed to enhance the transmission efficiency and distance for RF-based WET. However, in order to reap the large energy beamforming gain in MIMO WET, acquiring the channel state information (CSI) at the energy transmitter (ET) is an essential task. This task is particularly challenging for WET systems, since existing channel training and feedback methods used for communication receivers may not be implementable at the energy receiver (ER) due to its hardware limitation. To tackle this problem, in this paper we consider a multiuser MIMO system for WET, where a multiple-antenna ET broadcasts wireless energy to a group of multiple-antenna ERs concurrently via transmit energy beamforming. By taking into account the practical energy harvesting circuits at the ER, we propose a new channel learning method that requires only one feedback bit from each ER to the ET per feedback interval. The feedback bit indicates the increase or decrease of the harvested energy by each ER between the present and previous intervals, which can be measured without changing the existing hardware at the ER. Based on such feedback information, the ET adjusts transmit beamforming in different training intervals and at the same time obtains improved estimates of the MIMO channels to ERs by applying a new approach termed analytic center cutting plane method (ACCPM).Comment: This is the longer version of a paper to appear in IEEE Transactions on Signal Processin

    Opportunistic Collaborative Beamforming with One-Bit Feedback

    Full text link
    An energy-efficient opportunistic collaborative beamformer with one-bit feedback is proposed for ad hoc sensor networks over Rayleigh fading channels. In contrast to conventional collaborative beamforming schemes in which each source node uses channel state information to correct its local carrier offset and channel phase, the proposed beamforming scheme opportunistically selects a subset of source nodes whose received signals combine in a quasi-coherent manner at the intended receiver. No local phase-precompensation is performed by the nodes in the opportunistic collaborative beamformer. As a result, each node requires only one-bit of feedback from the destination in order to determine if it should or shouldn't participate in the collaborative beamformer. Theoretical analysis shows that the received signal power obtained with the proposed beamforming scheme scales linearly with the number of available source nodes. Since the the optimal node selection rule requires an exhaustive search over all possible subsets of source nodes, two low-complexity selection algorithms are developed. Simulation results confirm the effectiveness of opportunistic collaborative beamforming with the low-complexity selection algorithms.Comment: Proceedings of the Ninth IEEE Workshop on Signal Processing Advances in Wireless Communications, Recife, Brazil, July 6-9, 200

    Indoor off-body wireless communication: static beamforming versus space-time coding

    Get PDF
    The performance of beamforming versus space-time coding using a body-worn textile antenna array is experimentally evaluated for an indoor environment, where a walking rescue worker transmits data in the 2.45 GHz ISM band, relying on a vertical textile four-antenna array integrated into his garment. The two transmission scenarios considered are static beamforming at low-elevation angles and space-time code based transmit diversity. Signals are received by a base station equipped with a horizontal array of four dipole antennas providing spatial receive diversity through maximum-ratio combining. Signal-to-noise ratios, bit error rate characteristics, and signal correlation properties are assessed for both off-body transmission scenarios. Without receiver diversity, the performance of space-time coding is generally better. In case of fourth-order receiver diversity, beamforming is superior in line-of-sight conditions. For non-line-of-sight propagation, the space-time codes perform better as soon as bit error rates are low enough for a reliable data link
    • …
    corecore