1,070 research outputs found

    AOSD Ontology 1.0 - Public Ontology of Aspect-Orientation

    Get PDF
    This report presents a Common Foundation for Aspect-Oriented Software Development. A Common Foundation is required to enable effective communication and to enable integration of activities within the Network of Excellence. This Common Foundation is realized by developing an ontology, i.e. the shared meaning of terms and concepts in the domain of AOSD. In the first part of this report, we describe the definitions of an initial set of common AOSD terms. There is general agreement on these definitions. In the second part, we describe the Common Foundation task in detail

    Distributed aspect-oriented service composition for business compliance governance with public service processes

    Get PDF
    Service-Oriented Architecture (SOA) offers a technical foundation for Enterprise Application Integration and business collaboration through service-based business components. With increasing process outsourcing and cloud computing, enterprises need process-level integration and collaboration (process-oriented) to quickly launch new business processes for new customers and products. However, business processes that cross organisations’ compliance regulation boundaries are still unaddressed. We introduce a distributed aspect-oriented service composition approach, which enables multiple process clients hot-plugging their business compliance models (business rules, fault handling policy, and execution monitor) to BPEL business processes

    AO-OpenCom: an AO-Middleware architecture supporting flexible dynamic reconfiguration

    No full text
    Middleware has emerged as a key technology in the construction of distributed systems. As a consequence, middleware is increasingly required to be highly modular and configurable, to support separation of concerns between services, and, crucially, to support dynamic reconfiguration: i.e. to be capable of being changed while running. Aspect-oriented middleware is a promising technology for the realisation of distributed reconfiguration in distributed systems. In this paper we propose an aspect-oriented middleware platform called AO-OpenCom that builds AO-based reconfiguration on top of a dynamic component approach to middleware system composition. The goal is to support extremely flexible dynamic reconfiguration that can be applied at all levels of the system and uniformly across the distributed environment. We evaluate our platform by the capability in meeting flexible reconfiguration and the impact of these overheads

    Aspect-Oriented Programming

    Get PDF
    Aspect-oriented programming is a promising idea that can improve the quality of software by reduce the problem of code tangling and improving the separation of concerns. At ECOOP'97, the first AOP workshop brought together a number of researchers interested in aspect-orientation. At ECOOP'98, during the second AOP workshop the participants reported on progress in some research topics and raised more issues that were further discussed. \ud \ud This year, the ideas and concepts of AOP have been spread and adopted more widely, and, accordingly, the workshop received many submissions covering areas from design and application of aspects to design and implementation of aspect languages

    Towards a Taxonomy of Aspect-Oriented Programming.

    Get PDF
    As programs continue to increase in size, it has become increasingly difficult to separate concerns into well localized modules, which leads to code tangling- crosscutting code spread throughout several modules. Thus, Aspect-Oriented Programming (AOP) offers a solution to creating modules with little or no crosscutting concerns. AOP presents the notion of aspects, and demonstrates how crosscutting concerns can be taken out of modules and placed into a centralized location. In this paper, a taxonomy of aspect-oriented programming, as well as a basic overview and introduction of AOP, will be presented in order to assist future researchers in getting started on additional research on the topic. To form the taxonomy, over four-hundred research articles were organized into fifteen different primary categories coupled with sub-categories, which shows where some of the past research has been focused. In addition, trends of the research were evaluated and paths for future exploration are suggested

    Improving Reuse of Distributed Transaction Software with Transaction-Aware Aspects

    Get PDF
    Implementing crosscutting concerns for transactions is difficult, even using Aspect-Oriented Programming Languages (AOPLs) such as AspectJ. Many of these challenges arise because the context of a transaction-related crosscutting concern consists of loosely-coupled abstractions like dynamically-generated identifiers, timestamps, and tentative value sets of distributed resources. Current AOPLs do not provide joinpoints and pointcuts for weaving advice into high-level abstractions or contexts, like transaction contexts. Other challenges stem from the essential complexity in the nature of the data, operations on the data, or the volume of data, and accidental complexity comes from the way that the problem is being solved, even using common transaction frameworks. This dissertation describes an extension to AspectJ, called TransJ, with which developers can implement transaction-related crosscutting concerns in cohesive and loosely-coupled aspects. It also presents a preliminary experiment that provides evidence of improvement in reusability without sacrificing the performance of applications requiring essential transactions. This empirical study is conducted using the extended-quality model for transactional application to define measurements on the transaction software systems. This quality model defines three goals: the first relates to code quality (in terms of its reusability); the second to software performance; and the third concerns software development efficiency. Results from this study show that TransJ can improve the reusability while maintaining performance of TransJ applications requiring transaction for all eight areas addressed by the hypotheses: better encapsulation and separation of concern; loose Coupling, higher-cohesion and less tangling; improving obliviousness; preserving the software efficiency; improving extensibility; and hasten the development process

    Advancing Operating Systems via Aspect-Oriented Programming

    Get PDF
    Operating system kernels are among the most complex pieces of software in existence to- day. Maintaining the kernel code and developing new functionality is increasingly compli- cated, since the amount of required features has risen significantly, leading to side ef fects that can be introduced inadvertedly by changing a piece of code that belongs to a completely dif ferent context. Software developers try to modularize their code base into separate functional units. Some of the functionality or “concerns” required in a kernel, however, does not fit into the given modularization structure; this code may then be spread over the code base and its implementation tangled with code implementing dif ferent concerns. These so-called “crosscutting concerns” are especially dif ficult to handle since a change in a crosscutting concern implies that all relevant locations spread throughout the code base have to be modified. Aspect-Oriented Software Development (AOSD) is an approach to handle crosscutting concerns by factoring them out into separate modules. The “advice” code contained in these modules is woven into the original code base according to a pointcut description, a set of interaction points (joinpoints) with the code base. To be used in operating systems, AOSD requires tool support for the prevalent procedu- ral programming style as well as support for weaving aspects. Many interactions in kernel code are dynamic, so in order to implement non-static behavior and improve performance, a dynamic weaver that deploys and undeploys aspects at system runtime is required. This thesis presents an extension of the “C” programming language to support AOSD. Based on this, two dynamic weaving toolkits – TOSKANA and TOSKANA-VM – are presented to permit dynamic aspect weaving in the monolithic NetBSD kernel as well as in a virtual- machine and microkernel-based Linux kernel running on top of L4. Based on TOSKANA, applications for this dynamic aspect technology are discussed and evaluated. The thesis closes with a view on an aspect-oriented kernel structure that maintains coherency and handles crosscutting concerns using dynamic aspects while enhancing de- velopment methods through the use of domain-specific programming languages

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML
    • 

    corecore