15,202 research outputs found

    Distributed Dominating Sets on Grids

    Full text link
    This paper presents a distributed algorithm for finding near optimal dominating sets on grids. The basis for this algorithm is an existing centralized algorithm that constructs dominating sets on grids. The size of the dominating set provided by this centralized algorithm is upper-bounded by (m+2)(n+2)5\lceil\frac{(m+2)(n+2)}{5}\rceil for m×nm\times n grids and its difference from the optimal domination number of the grid is upper-bounded by five. Both the centralized and distributed algorithms are generalized for the kk-distance dominating set problem, where all grid vertices are within distance kk of the vertices in the dominating set.Comment: 10 pages, 9 figures, accepted in ACC 201

    On Two Combinatorial Optimization Problems in Graphs: Grid Domination and Robustness

    Get PDF
    In this thesis, we study two problems in combinatorial optimization, the dominating set problem and the robustness problem. In the first half of the thesis, we focus on the dominating set problem in grid graphs and present a distributed algorithm for finding near optimal dominating sets on grids. The dominating set problem is a well-studied mathematical problem in which the goal is to find a minimum size subset of vertices of a graph such that all vertices that are not in that set have a neighbor inside that set. We first provide a simpler proof for an existing centralized algorithm that constructs dominating sets on grids so that the size of the provided dominating set is upper-bounded by the ceiling of (m+2)(n+2)/5 for m by n grids and its difference from the optimal domination number of the grid is upper-bounded by five. We then design a distributed grid domination algorithm to locate mobile agents on a grid such that they constitute a dominating set for it. The basis for this algorithm is the centralized grid domination algorithm. We also generalize the centralized and distributed algorithms for the k-distance dominating set problem, where all grid vertices are within distance k of the vertices in the dominating set. In the second half of the thesis, we study the computational complexity of checking a graph property known as robustness. This property plays a key role in diffusion of information in networks. A graph G=(V,E) is r-robust if for all pairs of nonempty and disjoint subsets of its vertices A,B, at least one of the subsets has a vertex that has at least r neighbors outside its containing set. In the robustness problem, the goal is to find the largest value of r such that a graph G is r-robust. We show that this problem is coNP-complete. En route to showing this, we define some new problems, including the decision version of the robustness problem and its relaxed version in which B=V \ A. We show these two problems are coNP-hard by showing that their complement problems are NP-hard

    On (t,r) Broadcast Domination Numbers of Grids

    Full text link
    The domination number of a graph G=(V,E)G = (V,E) is the minimum cardinality of any subset SVS \subset V such that every vertex in VV is in SS or adjacent to an element of SS. Finding the domination numbers of mm by nn grids was an open problem for nearly 30 years and was finally solved in 2011 by Goncalves, Pinlou, Rao, and Thomass\'e. Many variants of domination number on graphs have been defined and studied, but exact values have not yet been obtained for grids. We will define a family of domination theories parameterized by pairs of positive integers (t,r)(t,r) where 1rt1 \leq r \leq t which generalize domination and distance domination theories for graphs. We call these domination numbers the (t,r)(t,r) broadcast domination numbers. We give the exact values of (t,r)(t,r) broadcast domination numbers for small grids, and we identify upper bounds for the (t,r)(t,r) broadcast domination numbers for large grids and conjecture that these bounds are tight for sufficiently large grids.Comment: 28 pages, 43 figure

    Epidemic Spreading with External Agents

    Full text link
    We study epidemic spreading processes in large networks, when the spread is assisted by a small number of external agents: infection sources with bounded spreading power, but whose movement is unrestricted vis-\`a-vis the underlying network topology. For networks which are `spatially constrained', we show that the spread of infection can be significantly speeded up even by a few such external agents infecting randomly. Moreover, for general networks, we derive upper-bounds on the order of the spreading time achieved by certain simple (random/greedy) external-spreading policies. Conversely, for certain common classes of networks such as line graphs, grids and random geometric graphs, we also derive lower bounds on the order of the spreading time over all (potentially network-state aware and adversarial) external-spreading policies; these adversarial lower bounds match (up to logarithmic factors) the spreading time achieved by an external agent with a random spreading policy. This demonstrates that random, state-oblivious infection-spreading by an external agent is in fact order-wise optimal for spreading in such spatially constrained networks

    Sizes of Minimum Connected Dominating Sets of a Class of Wireless Sensor Networks

    Get PDF
    We consider an important performance measure of wireless sensor networks, namely, the least number of nodes, N, required to facilitate routing between any pair of nodes, allowing other nodes to remain in sleep mode in order to conserve energy. We derive the expected value and the distribution of N for single dimensional dense networks
    corecore