71,830 research outputs found

    Distributed Detection in Sensor Networks with Limited Range Sensors

    Full text link
    We consider a multi-object detection problem over a sensor network (SNET) with limited range sensors. This problem complements the widely considered decentralized detection problem where all sensors observe the same object. While the necessity for global collaboration is clear in the decentralized detection problem, the benefits of collaboration with limited range sensors is unclear and has not been widely explored. In this paper we develop a distributed detection approach based on recent development of the false discovery rate (FDR). We first extend the FDR procedure and develop a transformation that exploits complete or partial knowledge of either the observed distributions at each sensor or the ensemble (mixture) distribution across all sensors. We then show that this transformation applies to multi-dimensional observations, thus extending FDR to multi-dimensional settings. We also extend FDR theory to cases where distributions under both null and positive hypotheses are uncertain. We then propose a robust distributed algorithm to perform detection. We further demonstrate scalability to large SNETs by showing that the upper bound on the communication complexity scales linearly with the number of sensors that are in the vicinity of objects and is independent of the total number of sensors. Finally, we deal with situations where the sensing model may be uncertain and establish robustness of our techniques to such uncertainties.Comment: Submitted to IEEE Transactions on Signal Processin

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree
    corecore