67 research outputs found

    SIMDAT

    No full text

    05271 Abstracts Collection -- Semantic Grid: The Convergence of Technologies

    Get PDF
    From 03.07.05 to 08.07.05, the Dagstuhl Seminar 05271 ``Semantic Grid -- The Convergence of Technologies\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Service-Oriented Data Mining

    Get PDF

    Evolving a secure grid-enabled, distributed data warehouse : a standards-based perspective

    Get PDF
    As digital data-collection has increased in scale and number, it becomes an important type of resource serving a wide community of researchers. Cross-institutional data-sharing and collaboration introduce a suitable approach to facilitate those research institutions that are suffering the lack of data and related IT infrastructures. Grid computing has become a widely adopted approach to enable cross-institutional resource-sharing and collaboration. It integrates a distributed and heterogeneous collection of locally managed users and resources. This project proposes a distributed data warehouse system, which uses Grid technology to enable data-access and integration, and collaborative operations across multi-distributed institutions in the context of HV/AIDS research. This study is based on wider research into OGSA-based Grid services architecture, comprising a data-analysis system which utilizes a data warehouse, data marts, and near-line operational database that are hosted by distributed institutions. Within this framework, specific patterns for collaboration, interoperability, resource virtualization and security are included. The heterogeneous and dynamic nature of the Grid environment introduces a number of security challenges. This study also concerns a set of particular security aspects, including PKI-based authentication, single sign-on, dynamic delegation, and attribute-based authorization. These mechanisms, as supported by the Globus Toolkit’s Grid Security Infrastructure, are used to enable interoperability and establish trust relationship between various security mechanisms and policies within different institutions; manage credentials; and ensure secure interactions

    An Intelligent QoS Identification for Untrustworthy Web Services Via Two-phase Neural Networks

    Full text link
    QoS identification for untrustworthy Web services is critical in QoS management in the service computing since the performance of untrustworthy Web services may result in QoS downgrade. The key issue is to intelligently learn the characteristics of trustworthy Web services from different QoS levels, then to identify the untrustworthy ones according to the characteristics of QoS metrics. As one of the intelligent identification approaches, deep neural network has emerged as a powerful technique in recent years. In this paper, we propose a novel two-phase neural network model to identify the untrustworthy Web services. In the first phase, Web services are collected from the published QoS dataset. Then, we design a feedforward neural network model to build the classifier for Web services with different QoS levels. In the second phase, we employ a probabilistic neural network (PNN) model to identify the untrustworthy Web services from each classification. The experimental results show the proposed approach has 90.5% identification ratio far higher than other competing approaches.Comment: 8 pages, 5 figure

    The cancer translational research informatics platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the pressing need for the creation of applications that facilitate the aggregation of clinical and molecular data, most current applications are proprietary and lack the necessary compliance with standards that would allow for cross-institutional data exchange. In line with its mission of accelerating research discoveries and improving patient outcomes by linking networks of researchers, physicians, and patients focused on cancer research, caBIG (cancer Biomedical Informatics Grid™) has sponsored the creation of the caTRIP (Cancer Translational Research Informatics Platform) tool, with the purpose of aggregating clinical and molecular data in a repository that is user-friendly, easily accessible, as well as compliant with regulatory requirements of privacy and security.</p> <p>Results</p> <p>caTRIP has been developed as an N-tier architecture, with three primary tiers: domain services, the distributed query engine, and the graphical user interface, primarily making use of the caGrid infrastructure to ensure compatibility with other tools currently developed by caBIG. The application interface was designed so that users can construct queries using either the Simple Interface via drop-down menus or the Advanced Interface for more sophisticated searching strategies to using drag-and-drop. Furthermore, the application addresses the security concerns of authentication, authorization, and delegation, as well as an automated honest broker service for deidentifying data.</p> <p>Conclusion</p> <p>Currently being deployed at Duke University and a few other centers, we expect that caTRIP will make a significant contribution to further the development of translational research through the facilitation of its data exchange and storage processes.</p

    Grid-based semantic integration of heterogeneous data resources : implementation on a HealthGrid

    Get PDF
    The semantic integration of geographically distributed and heterogeneous data resources still remains a key challenge in Grid infrastructures. Today's mainstream Grid technologies hold the promise to meet this challenge in a systematic manner, making data applications more scalable and manageable. The thesis conducts a thorough investigation of the problem, the state of the art, and the related technologies, and proposes an Architecture for Semantic Integration of Data Sources (ASIDS) addressing the semantic heterogeneity issue. It defines a simple mechanism for the interoperability of heterogeneous data sources in order to extract or discover information regardless of their different semantics. The constituent technologies of this architecture include Globus Toolkit (GT4) and OGSA-DAI (Open Grid Service Architecture Data Integration and Access) alongside other web services technologies such as XML (Extensive Markup Language). To show this, the ASIDS architecture was implemented and tested in a realistic setting by building an exemplar application prototype on a HealthGrid (pilot implementation). The study followed an empirical research methodology and was informed by extensive literature surveys and a critical analysis of the relevant technologies and their synergies. The two literature reviews, together with the analysis of the technology background, have provided a good overview of the current Grid and HealthGrid landscape, produced some valuable taxonomies, explored new paths by integrating technologies, and more importantly illuminated the problem and guided the research process towards a promising solution. Yet the primary contribution of this research is an approach that uses contemporary Grid technologies for integrating heterogeneous data resources that have semantically different. data fields (attributes). It has been practically demonstrated (using a prototype HealthGrid) that discovery in semantically integrated distributed data sources can be feasible by using mainstream Grid technologies, which have been shown to have some Significant advantages over non-Grid based approaches.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore