9,934 research outputs found

    Asymptotical Cooperative Cruise Fault Tolerant Control for Multiple High-speed Trains with State Constraints

    Full text link
    This paper investigates the asymptotical cooperative cruise fault tolerant control problem for multiple high-speed trains consisting of multiple carriages in the presence of actuator faults. A distributed state-fault observer utilizing the structural information of faults is designed to achieve asymptotical estimation of states and faults of each carriage. The observer does not rely on choice of control input, and thus it is separated from controller design. Based on the estimated values of states and faults, a distributed fault tolerance controller is designed to realize asymptotical cooperative cruise control of trains under the dual constraints of ensuring both position difference and velocity difference of adjacent trains in specified ranges throughout the whole process.Comment: 12 pages, 9 figure

    Assessment of the worthwhileness of efficient driving in railway systems with high-receptivity power supplies

    Get PDF
    Eco-driving is one of the most important strategies for significantly reducing the energy consumption of railways with low investments. It consists of designing a way of driving a train to fulfil a target running time, consuming the minimum amount of energy. Most eco-driving energy savings come from the substitution of some braking periods with coasting periods. Nowadays, modern trains can use regenerative braking to recover the kinetic energy during deceleration phases. Therefore, if the receptivity of the railway system to regenerate energy is high, a question arises: is it worth designing eco-driving speed profiles? This paper assesses the energy benefits that eco-driving can provide in different scenarios to answer this question. Eco-driving is obtained by means of a multi-objective particle swarm optimization algorithm, combined with a detailed train simulator, to obtain realistic results. Eco-driving speed profiles are compared with a standard driving that performs the same running time. Real data from Spanish high-speed lines have been used to analyze the results in two case studies. Stretches fed by 1 × 25 kV and 2 × 25 kV AC power supply systems have been considered, as they present high receptivity to regenerate energy. Furthermore, the variations of the two most important factors that affect the regenerative energy usage have been studied: train motors efficiency ratio and catenary resistance. Results indicate that the greater the catenary resistance, the more advantageous eco-driving is. Similarly, the lower the motor efficiency, the greater the energy savings provided by efficient driving. Despite the differences observed in energy savings, the main conclusion is that eco-driving always provides significant energy savings, even in the case of the most receptive power supply network. Therefore, this paper has demonstrated that efforts in improving regenerated energy usage must not neglect the role of eco-driving in railway efficiency

    Methodology to assess safety effects of future Intelligent Transport Systems on railway level crossings

    Get PDF
    There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX

    Documenting helicopter operations from an energy standpoint

    Get PDF
    Results are presented of a study of the relative and absolute energy consumption of helicopters, including limited comparisons with fixed-wing aircraft, and selected surface transportation vehicles. Additional comparisons were made to determine the level of reduction in energy consumption expected from the application of advanced technologies to the helicopter design and sizing process. It was found that improvements in helicopter consumption characteristics can be accomplished through the utilization of advanced technology to reduce drag, structures weight, and powerplant fuel consumption

    Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting Under Moving Blocks

    Get PDF
    Future advanced Positive Train Control systems may allow North American railroads to introduce moving blocks with shorter train headways. This research examines how closely following trains respond to different throttle and brake inputs. Using insights from connected automobile and truck platooning technology, six different following train control algorithms were developed, analyzed for stability, and evaluated with simulated fleets of freight trains. While moving blocks require additional train spacing beyond minimum safe braking distance to account for train control actions, certain following train algorithms can help minimize this distance and balance fuel efficiency and train headway by changing control parameters

    In loco intellegentia: Human factors for the future European train driver

    Get PDF
    The European Rail Traffic Management System (ERTMS) represents a step change in technology for rail operations in Europe. It comprises track-to-train communications and intelligent on-board systems providing an unprecedented degree of support to the train driver. ERTMS is designed to improve safety, capacity and performance, as well as facilitating interoperability across the European rail network. In many ways, particularly from the human factors perspective, ERTMS has parallels with automation concepts in the aviation and automotive industries. Lessons learned from both these industries are that such a technology raises a number of human factors issues associated with train driving and operations. The interaction amongst intelligent agents throughout the system must be effectively coordinated to ensure that the strategic benefits of ERTMS are realised. This paper discusses the psychology behind some of these key issues, such as Mental Workload (MWL), interface design, user information requirements, transitions and migration and communications. Relevant experience in aviation and vehicle automation is drawn upon to give an overview of the human factors challenges facing the UK rail industry in implementing ERTMS technology. By anticipating and defining these challenges before the technology is implemented, it is hoped that a proactive and structured programme of research can be planned to meet them

    A Preliminary Study of Solar Powered Aircraft and Associated Power Trains

    Get PDF
    The feasibility of regeneratively powered solar high altitude powered platform (HAPP) remotely piloted vehicles was assessed. Those technologies which must be pursued to make long duration solar HAPPs feasible are recommended. A methodology which involved characterization and parametric analysis of roughly two dozen variables to determine vehicles capable of fulfilling the primary mission are defined. One of these vehicles was then conceptually designed. Variations of each major design parameter were investigated along with state-of-the-art changes in power train component capabilities. The midlatitude mission studied would be attainable by a solar HAPP if fuel cell, electrolyzer and photovoltaic technologies are pursued. Vehicles will be very large and have very lightweight structures in order to attain the combinations of altitude and duration required by the primary mission

    Oceanographic and underwater acoustics research : conducted during the period 1 November 1960 - 30 April 1961

    Get PDF
    Digital computing techniques have been used in special computing applications in underwater acoustics at WHOI for many years, but recently we have commenced intensive application of digital data handling and computing facilities to a variety of computing, data storage, and data handling problems. Progress in these applications is described under Acoustic Instrumentation below. Some bathymetric studies carried out recently under another contract have shown that even very narrow-beam, single-beam echo sounders simply cannot provide reliable depth sounding information where the topography is complex. In this work we have been experimenting with the inverted echo sounder, discussed below, originally developed to measure depth of the sound velocimeter. The inverted echo sounder is lowered to a position within a few feet of the bottom. The total acoustic travel time from surface to bottom may be read as the sum of the travel times from the instrument to the bottom and surface . True depth is then computed in the usual way with appropriate s cnmd velocity data. In its present form the inverted echo sounder is suitable for mapping ~mall areas~ a few square miles, provided there is a suitable means of positioning the instrument. We have experimented with radio-acoustic navigation, and intend to experiment with vertical triangulation from the suspending ship as well. Steady demands for new, modified, and improved instrumentation have been responded to in echo sounding, seismic profiling, and spectrum analysis, as detailed below.Undersea Warfare Branch Office of Naval Research Under Contracts Nonr-1367(00)NR261-102 and Nonr-2129(00)NR261-10
    corecore