15,766 research outputs found

    Multi-Agent Distributed Coordination Control: Developments and Directions

    Full text link
    In this paper, the recent developments on distributed coordination control, especially the consensus and formation control, are summarized with the graph theory playing a central role, in order to present a cohesive overview of the multi-agent distributed coordination control, together with brief reviews of some closely related issues including rendezvous/alignment, swarming/flocking and containment control.In terms of the consensus problem, the recent results on consensus for the agents with different dynamics from first-order, second-order to high-order linear and nonlinear dynamics, under different communication conditions, such as cases with/without switching communication topology and varying time-delays, are reviewed, in which the algebraic graph theory is very useful in the protocol designs, stability proofs and converging analysis. In terms of the formation control problem, after reviewing the results of the algebraic graph theory employed in the formation control, we mainly pay attention to the developments of the rigid and persistent graphs. With the notions of rigidity and persistence, the formation transformation, splitting and reconstruction can be completed, and consequently the range-based formation control laws are designed with the least required information in order to maintain a formation rigid/persistent. Afterwards, the recent results on rendezvous/alignment, swarming/flocking and containment control, which are very closely related to consensus and formation control, are briefly introduced, in order to present an integrated view of the graph theory used in the coordination control problem. Finally, towards the practical applications, some directions possibly deserving investigation in coordination control are raised as well.Comment: 28 pages, 8 figure

    Containment Control of Second-order Multi-agent Systems Under Directed Graphs and Communication Constraints

    Full text link
    The distributed coordination problem of multi-agent systems is addressed in this paper under the assumption of intermittent communication between agents in the presence of time-varying communication delays. Specifically, we consider the containment control problem of second-order multi-agent systems with multiple dynamic leaders under a directed interconnection graph topology. Also, communication between agents is performed only at some discrete instants of time in the presence of irregular communication delays and packet dropout. First, we present distributed control algorithms for double integrator dynamics in the full and partial state feedback cases. Then, we propose a method to extend our results to second-order systems with locally Lipschitz nonlinear dynamics. In both cases, we show that the proposed approach leads to our control objectives under sufficient conditions relating the characteristics of the communication process and the control gains. We also show that our approach can be applied to solve various similar coordination problems in multi-agent systems under the same communication constraints. The effectiveness of the proposed control schemes is illustrated through some examples and numerical simulations.Comment: Modified version. Paper submitted for publicatio

    Designing Distributed Fixed-Time Consensus Protocols for Linear Multi-Agent Systems Over Directed Graphs

    Full text link
    This technical note addresses the distributed fixed-time consensus protocol design problem for multi-agent systems with general linear dynamics over directed communication graphs. By using motion planning approaches, a class of distributed fixed-time consensus algorithms are developed, which rely only on the sampling information at some sampling instants. For linear multi-agent systems, the proposed algorithms solve the fixed-time consensus problem for any directed graph containing a directed spanning tree. In particular, the settling time can be off-line pre-assigned according to task requirements. Compared with the existing results for multi-agent systems, to our best knowledge, it is the first-time to solve fixed-time consensus problems for general linear multi-agent systems over directed graphs having a directed spanning tree. Extensions to the fixed-time formation flying are further studied for multiple satellites described by Hill equations

    Fixed-time consensus of multiple double-integrator systems under directed topologies: A motion-planning approach

    Full text link
    This paper investigates the fixed-time consensus problem under directed topologies. By using a motion-planning approach, a class of distributed fixed-time algorithms are developed for a multi-agent system with double-integrator dynamics. In the context of the fixed-time consensus, we focus on both directed fixed and switching topologies. Under the directed fixed topology, a novel class of distributed algorithms are designed, which guarantee the consensus of the multi-agent system with a fixed settling time if the topology has a directed spanning tree. Under the directed periodically switching topologies, the fixedtime consensus is solved via the proposed algorithms if the topologies jointly have a directed spanning tree. In particular, the fixed settling time can be off-line pre-assigned according to task requirements. Compared with the existing results, to our best knowledge, it is the first time to solve the fixed-time consensus problem for double-integrator systems under directed topologies. Finally, a numerical example is given to illustrate the effectiveness of the analytical results

    Distributed Control of Networked Dynamical Systems: Static Feedback, Integral Action and Consensus

    Full text link
    This paper analyzes distributed control protocols for first- and second-order networked dynamical systems. We propose a class of nonlinear consensus controllers where the input of each agent can be written as a product of a nonlinear gain, and a sum of nonlinear interaction functions. By using integral Lyapunov functions, we prove the stability of the proposed control protocols, and explicitly characterize the equilibrium set. We also propose a distributed proportional-integral (PI) controller for networked dynamical systems. The PI controllers successfully attenuate constant disturbances in the network. We prove that agents with single-integrator dynamics are stable for any integral gain, and give an explicit tight upper bound on the integral gain for when the system is stable for agents with double-integrator dynamics. Throughout the paper we highlight some possible applications of the proposed controllers by realistic simulations of autonomous satellites, power systems and building temperature control.Comment: Automatic Control, IEEE Transactions on, July 201

    On the Synchronization of Second-Order Nonlinear Systems with Communication Constraints

    Full text link
    This paper studies the synchronization problem of second-order nonlinear multi-agent systems with intermittent communication in the presence of irregular communication delays and possible information loss. The control objective is to steer all systems' positions to a common position with a prescribed desired velocity available to only some leaders. Based on the small-gain framework, we propose a synchronization scheme relying on an intermittent information exchange protocol in the presence of time delays and possible packet dropout. We show that our control objectives are achieved with a simple selection of the control gains provided that the directed graph, describing the interconnection between all systems (or agents), contains a spanning tree. The example of Euler-Lagrange systems is considered to illustrate the application and effectiveness of the proposed approach.Comment: 21 pages, 8 figures. Submitted for journal publicatio

    Fully Distributed Flocking with a Moving Leader for Lagrange Networks with Parametric Uncertainties

    Full text link
    This paper addresses the leader-follower flocking problem with a moving leader for networked Lagrange systems with parametric uncertainties under a proximity graph. Here a group of followers move cohesively with the moving leader to maintain connectivity and avoid collisions for all time and also eventually achieve velocity matching. In the proximity graph, the neighbor relationship is defined according to the relative distance between each pair of agents. Each follower is able to obtain information from only the neighbors in its proximity, involving only local interaction. We consider two cases: i) the leader moves with a constant velocity, and ii) the leader moves with a varying velocity. In the first case, a distributed continuous adaptive control algorithm accounting for unknown parameters is proposed in combination with a distributed continuous estimator for each follower. In the second case, a distributed discontinuous adaptive control algorithm and estimator are proposed. Then the algorithm is extended to be fully distributed with the introduction of gain adaptation laws. In all proposed algorithms, only one-hop neighbors' information (e.g., the relative position and velocity measurements between the neighbors and the absolute position and velocity measurements) is required, and flocking is achieved as long as the connectivity and collision avoidance are ensured at the initial time and the control gains are designed properly. Numerical simulations are presented to illustrate the theoretical results

    A Lyapunov redesign of coordination algorithms for cyberphysical systems

    Full text link
    The objective is to design distributed coordination strategies for a network of agents in a cyber-physical environment. In particular, we concentrate on the rendez-vous of agents having double-integrator dynamics with the addition of a damping term in the velocity dynamics. We start with distributed controllers that solve the problem in continuous-time, and we then explain how to implement these using event-based sampling. The idea is to define a triggering rule per edge using a clock variable which only depends on the local variables. The triggering laws are designed to compensate for the perturbative term introduced by the sampling, a technique that reminds of Lyapunov-based control redesign. We first present an event-triggered solution which requires continuous measurement of the relative position and we then explain how to convert it to a self-triggered policy. The latter only requires the measurements of the relative position and velocity at the last transmission instants, which is useful to reduce both the communication and the computation costs. The strategies guarantee the existence of a uniform minimum amount of times between any two edge events. The analysis is carried out using an invariance principle for hybrid systems

    Distributed model independent algorithm for spacecraft synchronization under relative measurement bias

    Full text link
    This paper addresses the problem of distributed coordination control of spacecraft formation. It is assumed that the agents measure relative positions of each other with a non-zero, unknown constant sensor bias. The translational dynamics of the spacecraft is expressed in Euler-Lagrangian form. We propose a novel distributed, model independent control law for synchronization of networked Euler Lagrange system with biased measurements. An adaptive control law is derived based on Lyapunov analysis to estimate the bias. The proposed algorithm ensures that the velocities converge to that of leader exponentially while the positions converge to a bounded neighborhood of the leader positions. We have assumed a connected leader-follower network of spacecraft. Simulation results on a six spacecraft formation corroborate our theoretical findings.Comment: Submitted to 5th CEAS Conference on Guidance, Navigation and Contro

    Observer-Based Distributed Leader-Follower Tracking Control: A New Perspective and Results

    Full text link
    Leader-follower tracking control design has received significant attention in recent years due to its important and wide applications. Considering a multi-agent system composed of a leader and multiple followers, this paper proposes and investigates a new perspective into this problem: can we enable a follower to estimate the leader's driving input and leverage this idea to develop new observer-based tracking control approaches? With this motivation, we develop an input-observer-based leader-follower tracking control framework, which features distributed input observers that allow a follower to locally estimate the leader's input toward enhancing tracking control. This work first studies the first-order tracking problem. It then extends to the more sophisticated case of second-order tracking and considers a challenging situation when the leader's and followers' velocities are not measured. The proposed approaches exhibit interesting and useful advantages as revealed by a comparison with the literature. Convergence properties of the proposed approaches are rigorously analyzed. Simulation results further illustrate the efficacy of the proposed perspective, framework and approaches.Comment: International Journal of Control 201
    • …
    corecore