808 research outputs found

    Optimal train control on various track alignments considering speed and schedule adherence constraints

    Get PDF
    The methodology discussed in this dissertation contributes to the field of transit operational control to reduce energy consumption. Due to the recent increase in gasoline cost, a significant number of travelers are shifting from highway modes to public transit, which also induces higher transit energy consumption expenses. This study presents an approach to optimize train motion regimes for various track alignments, which minimizes total energy consumption subject to allowable travel time, maximum operating speed, and maximum acceleration/deceleration rates. The research problem is structured into four cases which consist of the combinations of track alignments (e.g., single vertical alignment and mixed vertical alignment) and the variation of maximum operating speeds (e.g., constant and variable). The Simulated Annealing (SA) approach is employed to search for the optimal train control, called golden run . To accurately estimate energy consumption and travel time, a Train Performance Simulation (TPS) is developed, which replicates train movements determined by a set of dynamic variables (e,g., duration of acceleration and cruising, coasting position, braking position, etc.) as well as operational constraints (e.g., track alignment, speed limit, minimum travel time, etc.) The applicability of the developed methodology is demonstrated with geographic data of two real world rail line segments of The New Haven Line of the Metro North Railroad: Harrison to Rye Stations and East Norwalk to Westport Stations. The results of optimal solutions and sensitivity analyses are presented. The sensitivity analyses enable a transit operator to quantify the impact of the coasting position, travel time constraint, vertical dip of the track alignment, maximum operating speed, and the load and weight of the train to energy consumption. The developed models can assist future rail system with Automatic Train Control (ATC), Automatic Train Operation (ATO) and Positive Train Control (PTC), or conventional railroad systems to improve the planning and operation of signal systems. The optimal train speed profile derived in this study can be considered by the existing signal system for determining train operating speeds over a route

    Infrastructure Design, Signalling and Security in Railway

    Get PDF
    Railway transportation has become one of the main technological advances of our society. Since the first railway used to carry coal from a mine in Shropshire (England, 1600), a lot of efforts have been made to improve this transportation concept. One of its milestones was the invention and development of the steam locomotive, but commercial rail travels became practical two hundred years later. From these first attempts, railway infrastructures, signalling and security have evolved and become more complex than those performed in its earlier stages. This book will provide readers a comprehensive technical guide, covering these topics and presenting a brief overview of selected railway systems in the world. The objective of the book is to serve as a valuable reference for students, educators, scientists, faculty members, researchers, and engineers

    Energy-Efficient and Semi-automated Truck Platooning

    Get PDF
    This open access book presents research and evaluation results of the Austrian flagship project “Connecting Austria,” illustrating the wide range of research needs and questions that arise when semi-automated truck platooning is deployed in Austria. The work presented is introduced in the context of work in similar research areas around the world. This interdisciplinary research effort considers aspects of engineering, road-vehicle and infrastructure technologies, traffic management and optimization, traffic safety, and psychology, as well as potential economic effects. The book’s broad perspective means that readers interested in current and state-of-the-art methods and techniques for the realization of semi-automated driving and with either an engineering background or with a less technical background gain a comprehensive picture of this important subject. The contributors address many questions such as: Which maneuvers does a platoon typically have to carry out, and how? How can platoons be integrated seamlessly in the traffic flow without becoming an obstacle to individual road users? What trade-offs between system information (sensors, communication effort, etc.) and efficiency are realistic? How can intersections be passed by a platoon in an intelligent fashion? Consideration of diverse disciplines and highlighting their meaning for semi-automated truck platooning, together with the highlighting of necessary research and evaluation patterns to address such a broad task scientifically, makes Energy-Efficient and Semi-automated Truck Platooning a unique contribution with methods that can be extended and adapted beyond the geographical area of the research reported

    Proceedings of the 3rd International Conference on Models and Technologies for Intelligent Transportation Systems 2013

    Get PDF
    Challenges arising from an increasing traffic demand, limited resource availability and growing quality expectations of the customers can only be met successfully, if each transport mode is regarded as an intelligent transportation system itself, but also as part of one intelligent transportation system with “intelligent” intramodal and intermodal interfaces. This topic is well reflected in the Third International Conference on “Models and Technologies for Intelligent Transportation Systems” which took place in Dresden 2013 (previous editions: Rome 2009, Leuven 2011). With its variety of traffic management problems that can be solved using similar methods and technologies, but with application specific models, objective functions and constraints the conference stands for an intensive exchange between theory and practice and the presentation of case studies for all transport modes and gives a discussion forum for control engineers, computer scientists, mathematicians and other researchers and practitioners. The present book comprises fifty short papers accepted for presentation at the Third Edition of the conference. All submissions have undergone intensive reviews by the organisers of the special sessions, the members of the scientific and technical advisory committees and further external experts in the field. Like the conference itself the proceedings are structured in twelve streams: the more model-oriented streams of Road-Bound Public Transport Management, Modelling and Control of Urban Traffic Flow, Railway Traffic Management in four different sessions, Air Traffic Management, Water Traffic and Traffic and Transit Assignment, as well as the technology-oriented streams of Floating Car Data, Localisation Technologies for Intelligent Transportation Systems and Image Processing in Transportation. With this broad range of topics this book will be of interest to a number of groups: ITS experts in research and industry, students of transport and control engineering, operations research and computer science. The case studies will also be of interest for transport operators and members of traffic administration

    Power Quality in Electrified Transportation Systems

    Get PDF
    "Power Quality in Electrified Transportation Systems" has covered interesting horizontal topics over diversified transportation technologies, ranging from railways to electric vehicles and ships. Although the attention is chiefly focused on typical railway issues such as harmonics, resonances and reactive power flow compensation, the integration of electric vehicles plays a significant role. The book is completed by some additional significant contributions, focusing on the interpretation of Power Quality phenomena propagation in railways using the fundamentals of electromagnetic theory and on electric ships in the light of the latest standardization efforts

    User mobility prediction and management using machine learning

    Get PDF
    The next generation mobile networks (NGMNs) are envisioned to overcome current user mobility limitations while improving the network performance. Some of the limitations envisioned for mobility management in the future mobile networks are: addressing the massive traffic growth bottlenecks; providing better quality and experience to end users; supporting ultra high data rates; ensuring ultra low latency, seamless handover (HOs) from one base station (BS) to another, etc. Thus, in order for future networks to manage users mobility through all of the stringent limitations mentioned, artificial intelligence (AI) is deemed to play a key role automating end-to-end process through machine learning (ML). The objectives of this thesis are to explore user mobility predictions and management use-cases using ML. First, background and literature review is presented which covers, current mobile networks overview, and ML-driven applications to enable user’s mobility and management. Followed by the use-cases of mobility prediction in dense mobile networks are analysed and optimised with the use of ML algorithms. The overall framework test accuracy of 91.17% was obtained in comparison to all other mobility prediction algorithms through artificial neural network (ANN). Furthermore, a concept of mobility prediction-based energy consumption is discussed to automate and classify user’s mobility and reduce carbon emissions under smart city transportation achieving 98.82% with k-nearest neighbour (KNN) classifier as an optimal result along with 31.83% energy savings gain. Finally, context-aware handover (HO) skipping scenario is analysed in order to improve over all quality of service (QoS) as a framework of mobility management in next generation networks (NGNs). The framework relies on passenger mobility, trains trajectory, travelling time and frequency, network load and signal ratio data in cardinal directions i.e, North, East, West, and South (NEWS) achieving optimum result of 94.51% through support vector machine (SVM) classifier. These results were fed into HO skipping techniques to analyse, coverage probability, throughput, and HO cost. This work is extended by blockchain-enabled privacy preservation mechanism to provide end-to-end secure platform throughout train passengers mobility

    Energy-Efficient and Semi-automated Truck Platooning

    Get PDF
    This open access book presents research and evaluation results of the Austrian flagship project “Connecting Austria,” illustrating the wide range of research needs and questions that arise when semi-automated truck platooning is deployed in Austria. The work presented is introduced in the context of work in similar research areas around the world. This interdisciplinary research effort considers aspects of engineering, road-vehicle and infrastructure technologies, traffic management and optimization, traffic safety, and psychology, as well as potential economic effects. The book’s broad perspective means that readers interested in current and state-of-the-art methods and techniques for the realization of semi-automated driving and with either an engineering background or with a less technical background gain a comprehensive picture of this important subject. The contributors address many questions such as: Which maneuvers does a platoon typically have to carry out, and how? How can platoons be integrated seamlessly in the traffic flow without becoming an obstacle to individual road users? What trade-offs between system information (sensors, communication effort, etc.) and efficiency are realistic? How can intersections be passed by a platoon in an intelligent fashion? Consideration of diverse disciplines and highlighting their meaning for semi-automated truck platooning, together with the highlighting of necessary research and evaluation patterns to address such a broad task scientifically, makes Energy-Efficient and Semi-automated Truck Platooning a unique contribution with methods that can be extended and adapted beyond the geographical area of the research reported

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2
    • …
    corecore