15,234 research outputs found

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    ControlIt! - A Software Framework for Whole-Body Operational Space Control

    Full text link
    Whole Body Operational Space Control (WBOSC) is a pioneering algorithm in the field of human-centered Whole-Body Control (WBC). It enables floating-base highly-redundant robots to achieve unified motion/force control of one or more operational space objectives while adhering to physical constraints. Limited studies exist on the software architecture and APIs that enable WBOSC to perform and be integrated into a larger system. In this paper we address this by presenting ControlIt!, a new open-source software framework for WBOSC. Unlike previous implementations, ControlIt! is multi-threaded to increase servo frequencies on standard PC hardware. A new parameter binding mechanism enables tight integration between ControlIt! and external processes via an extensible set of transport protocols. To support a new robot, only two plugins and a URDF model needs to be provided --- the rest of ControlIt! remains unchanged. New WBC primitives can be added by writing a Task or Constraint plugin. ControlIt!'s capabilities are demonstrated on Dreamer, a 16-DOF torque controlled humanoid upper body robot containing both series elastic and co-actuated joints, and using it to perform a product disassembly task. Using this testbed, we show that ControlIt! can achieve average servo latencies of about 0.5ms when configured with two Cartesian position tasks, two orientation tasks, and a lower priority posture task. This is significantly higher than the 5ms that was achieved using UTA-WBC, the prototype implementation of WBOSC that is both application and platform-specific. Variations in the product's position is handled by updating the goal of the Cartesian position task. ControlIt!'s source code is released under an LGPL license and we hope it will be adopted and maintained by the WBC community for the long term as a platform for WBC development and integration

    A Comprehensive Review of Smart Wheelchairs: Past, Present and Future

    Full text link
    A smart wheelchair (SW) is a power wheelchair (PW) to which computers, sensors, and assistive technology are attached. In the past decade, there has been little effort to provide a systematic review of SW research. This paper aims to provide a complete state-of-the-art overview of SW research trends. We expect that the information gathered in this study will enhance awareness of the status of contemporary PW as well as SW technology, and increase the functional mobility of people who use PWs. We systematically present the international SW research effort, starting with an introduction to power wheelchairs and the communities they serve. Then we discuss in detail the SW and associated technological innovations with an emphasis on the most researched areas, generating the most interest for future research and development. We conclude with our vision for the future of SW research and how to best serve people with all types of disabilities

    Multi-Object Tracking and Identification over Sets

    Full text link
    The ability for an autonomous agent or robot to track and identify potentially multiple objects in a dynamic environment is essential for many applications, such as automated surveillance, traffic monitoring, human-robot interaction, etc. The main challenge is due to the noisy and incomplete perception including inevitable false negative and false positive errors from a low-level detector. In this paper, we propose a novel multi-object tracking and identification over sets approach to address this challenge. We define joint states and observations both as finite sets, and develop motion and observation functions accordingly. The object identification problem is then formulated and solved by using expectation-maximization methods. The set formulation enables us to avoid directly performing observation-to-object association. We empirically confirm that the overall algorithm outperforms the state-of-the-art in a popular PETS dataset.Comment: Draft versio

    Hierarchical and State-based Architectures for Robot Behavior Planning and Control

    Full text link
    In this paper, two behavior control architectures for autonomous agents in the form of cross-platform C++ frameworks are presented, the State Controller Library and the Behavior Control Framework. While the former is state-based and generalizes the notion of states and finite state machines to allow for multi-action planning, the latter is behavior-based and exploits a hierarchical structure and the concept of inhibitions to allow for dynamic transitioning. The two frameworks have completely independent implementations, but can be used effectively in tandem to solve behavior control problems on all levels of granularity. Both frameworks have been used to control the NimbRo-OP, a humanoid soccer robot developed by team NimbRo of the University of Bonn.Comment: Proceedings of 8th Workshop on Humanoid Soccer Robots, International Conference on Humanoid Robots (Humanoids), Atlanta, USA, 201

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Towards Dialogue-based Navigation with Multivariate Adaptation driven by Intention and Politeness for Social Robots

    Full text link
    Service robots need to show appropriate social behaviour in order to be deployed in social environments such as healthcare, education, retail, etc. Some of the main capabilities that robots should have are navigation and conversational skills. If the person is impatient, the person might want a robot to navigate faster and vice versa. Linguistic features that indicate politeness can provide social cues about a person's patient and impatient behaviour. The novelty presented in this paper is to dynamically incorporate politeness in robotic dialogue systems for navigation. Understanding the politeness in users' speech can be used to modulate the robot behaviour and responses. Therefore, we developed a dialogue system to navigate in an indoor environment, which produces different robot behaviours and responses based on users' intention and degree of politeness. We deploy and test our system with the Pepper robot that adapts to the changes in user's politeness.Comment: Proceedings of ICSR 201

    Emerging Linguistic Functions in Early Infancy

    Get PDF
    This paper presents results from experimental studies on early language acquisition in infants and attempts to interpret the experimental results within the framework of the Ecological Theory of Language Acquisition (ETLA) recently proposed by (Lacerda et al., 2004a). From this perspective, the infantā€™s first steps in the acquisition of the ambient language are seen as a consequence of the infantā€™s general capacity to represent sensory input and the infantā€™s interaction with other actors in its immediate ecological environment. On the basis of available experimental evidence, it will be argued that ETLA offers a productive alternative to traditional descriptive views of the language acquisition process by presenting an operative model of how early linguistic function may emerge through interaction

    Design and Validation of a MR-compatible Pneumatic Manipulandum

    Get PDF
    The combination of functional MR imaging and novel robotic tools may provide unique opportunities to probe the neural systems underlying motor control and learning. Here, we describe the design and validation of a MR-compatible, 1 degree-of-freedom pneumatic manipulandum along with experiments demonstrating its safety and efficacy. We first validated the robot\u27s ability to apply computer-controlled loads about the wrist, demonstrating that it possesses sufficient bandwidth to simulate torsional spring-like loads during point-to-point flexion movements. Next, we verified the MR-compatibility of the device by imaging a head phantom during robot operation. We observed no systematic differences in two measures of MRI signal quality (signal/noise and field homogeneity) when the robot was introduced into the scanner environment. Likewise, measurements of joint angle and actuator pressure were not adversely affected by scanning. Finally, we verified device efficacy by scanning 20 healthy human subjects performing rapid wrist flexions against a wide range of spring-like loads. We observed a linear relationship between joint torque at peak movement extent and perturbation magnitude, thus demonstrating the robot\u27s ability to simulate spring-like loads in situ. fMRI revealed task-related activation in regions known to contribute to the control of movement including the left primary sensorimotor cortex and right cerebellum

    Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

    Full text link
    We propose deep distributed recurrent Q-networks (DDRQN), which enable teams of agents to learn to solve communication-based coordination tasks. In these tasks, the agents are not given any pre-designed communication protocol. Therefore, in order to successfully communicate, they must first automatically develop and agree upon their own communication protocol. We present empirical results on two multi-agent learning problems based on well-known riddles, demonstrating that DDRQN can successfully solve such tasks and discover elegant communication protocols to do so. To our knowledge, this is the first time deep reinforcement learning has succeeded in learning communication protocols. In addition, we present ablation experiments that confirm that each of the main components of the DDRQN architecture are critical to its success
    • ā€¦
    corecore