1,616 research outputs found

    COMET: A Recipe for Learning and Using Large Ensembles on Massive Data

    Full text link
    COMET is a single-pass MapReduce algorithm for learning on large-scale data. It builds multiple random forest ensembles on distributed blocks of data and merges them into a mega-ensemble. This approach is appropriate when learning from massive-scale data that is too large to fit on a single machine. To get the best accuracy, IVoting should be used instead of bagging to generate the training subset for each decision tree in the random forest. Experiments with two large datasets (5GB and 50GB compressed) show that COMET compares favorably (in both accuracy and training time) to learning on a subsample of data using a serial algorithm. Finally, we propose a new Gaussian approach for lazy ensemble evaluation which dynamically decides how many ensemble members to evaluate per data point; this can reduce evaluation cost by 100X or more

    Evolving Large-Scale Data Stream Analytics based on Scalable PANFIS

    Full text link
    Many distributed machine learning frameworks have recently been built to speed up the large-scale data learning process. However, most distributed machine learning used in these frameworks still uses an offline algorithm model which cannot cope with the data stream problems. In fact, large-scale data are mostly generated by the non-stationary data stream where its pattern evolves over time. To address this problem, we propose a novel Evolving Large-scale Data Stream Analytics framework based on a Scalable Parsimonious Network based on Fuzzy Inference System (Scalable PANFIS), where the PANFIS evolving algorithm is distributed over the worker nodes in the cloud to learn large-scale data stream. Scalable PANFIS framework incorporates the active learning (AL) strategy and two model fusion methods. The AL accelerates the distributed learning process to generate an initial evolving large-scale data stream model (initial model), whereas the two model fusion methods aggregate an initial model to generate the final model. The final model represents the update of current large-scale data knowledge which can be used to infer future data. Extensive experiments on this framework are validated by measuring the accuracy and running time of four combinations of Scalable PANFIS and other Spark-based built in algorithms. The results indicate that Scalable PANFIS with AL improves the training time to be almost two times faster than Scalable PANFIS without AL. The results also show both rule merging and the voting mechanisms yield similar accuracy in general among Scalable PANFIS algorithms and they are generally better than Spark-based algorithms. In terms of running time, the Scalable PANFIS training time outperforms all Spark-based algorithms when classifying numerous benchmark datasets.Comment: 20 pages, 5 figure

    QuPARA: Query-Driven Large-Scale Portfolio Aggregate Risk Analysis on MapReduce

    Full text link
    Stochastic simulation techniques are used for portfolio risk analysis. Risk portfolios may consist of thousands of reinsurance contracts covering millions of insured locations. To quantify risk each portfolio must be evaluated in up to a million simulation trials, each capturing a different possible sequence of catastrophic events over the course of a contractual year. In this paper, we explore the design of a flexible framework for portfolio risk analysis that facilitates answering a rich variety of catastrophic risk queries. Rather than aggregating simulation data in order to produce a small set of high-level risk metrics efficiently (as is often done in production risk management systems), the focus here is on allowing the user to pose queries on unaggregated or partially aggregated data. The goal is to provide a flexible framework that can be used by analysts to answer a wide variety of unanticipated but natural ad hoc queries. Such detailed queries can help actuaries or underwriters to better understand the multiple dimensions (e.g., spatial correlation, seasonality, peril features, construction features, and financial terms) that can impact portfolio risk. We implemented a prototype system, called QuPARA (Query-Driven Large-Scale Portfolio Aggregate Risk Analysis), using Hadoop, which is Apache's implementation of the MapReduce paradigm. This allows the user to take advantage of large parallel compute servers in order to answer ad hoc risk analysis queries efficiently even on very large data sets typically encountered in practice. We describe the design and implementation of QuPARA and present experimental results that demonstrate its feasibility. A full portfolio risk analysis run consisting of a 1,000,000 trial simulation, with 1,000 events per trial, and 3,200 risk transfer contracts can be completed on a 16-node Hadoop cluster in just over 20 minutes.Comment: 9 pages, IEEE International Conference on Big Data (BigData), Santa Clara, USA, 201

    PerfXplain: Debugging MapReduce Job Performance

    Full text link
    While users today have access to many tools that assist in performing large scale data analysis tasks, understanding the performance characteristics of their parallel computations, such as MapReduce jobs, remains difficult. We present PerfXplain, a system that enables users to ask questions about the relative performances (i.e., runtimes) of pairs of MapReduce jobs. PerfXplain provides a new query language for articulating performance queries and an algorithm for generating explanations from a log of past MapReduce job executions. We formally define the notion of an explanation together with three metrics, relevance, precision, and generality, that measure explanation quality. We present the explanation-generation algorithm based on techniques related to decision-tree building. We evaluate the approach on a log of past executions on Amazon EC2, and show that our approach can generate quality explanations, outperforming two naive explanation-generation methods.Comment: VLDB201
    • …
    corecore