88 research outputs found

    Distributed Compressed Sensing for Sensor Networks with Packet Erasures

    Full text link
    We study two approaches to distributed compressed sensing for in-network data compression and signal reconstruction at a sink in a wireless sensor network where sensors are placed on a straight line. Communication to the sink is considered to be bandwidth-constrained due to the large number of devices. By using distributed compressed sensing for compression of the data in the network, the communication cost (bandwith usage) to the sink can be decreased at the expense of delay induced by the local communication necessary for compression. We investigate the relation between cost and delay given a certain reconstruction performance requirement when using basis pursuit denoising for reconstruction. Moreover, we analyze and compare the performance degradation due to erased packets sent to the sink of the two approaches.Comment: Paper accepted to GLOBECOM 201

    Cross-Sender Bit-Mixing Coding

    Full text link
    Scheduling to avoid packet collisions is a long-standing challenge in networking, and has become even trickier in wireless networks with multiple senders and multiple receivers. In fact, researchers have proved that even {\em perfect} scheduling can only achieve R=O(1lnN)\mathbf{R} = O(\frac{1}{\ln N}). Here NN is the number of nodes in the network, and R\mathbf{R} is the {\em medium utilization rate}. Ideally, one would hope to achieve R=Θ(1)\mathbf{R} = \Theta(1), while avoiding all the complexities in scheduling. To this end, this paper proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely on scheduling. Instead, users transmit simultaneously on suitably-chosen slots, and the amount of overlap in different user's slots is controlled via coding. We prove that in all possible network topologies, using BMC enables us to achieve R=Θ(1)\mathbf{R}=\Theta(1). We also prove that the space and time complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing in Sensor Networks (IPSN), 201

    Zero-padding Network Coding and Compressed Sensing for Optimized Packets Transmission

    Get PDF
    Ubiquitous Internet of Things (IoT) is destined to connect everybody and everything on a never-before-seen scale. Such networks, however, have to tackle the inherent issues created by the presence of very heterogeneous data transmissions over the same shared network. This very diverse communication, in turn, produces network packets of various sizes ranging from very small sensory readings to comparatively humongous video frames. Such a massive amount of data itself, as in the case of sensory networks, is also continuously captured at varying rates and contributes to increasing the load on the network itself, which could hinder transmission efficiency. However, they also open up possibilities to exploit various correlations in the transmitted data due to their sheer number. Reductions based on this also enable the networks to keep up with the new wave of big data-driven communications by simply investing in the promotion of select techniques that efficiently utilize the resources of the communication systems. One of the solutions to tackle the erroneous transmission of data employs linear coding techniques, which are ill-equipped to handle the processing of packets with differing sizes. Random Linear Network Coding (RLNC), for instance, generates unreasonable amounts of padding overhead to compensate for the different message lengths, thereby suppressing the pervasive benefits of the coding itself. We propose a set of approaches that overcome such issues, while also reducing the decoding delays at the same time. Specifically, we introduce and elaborate on the concept of macro-symbols and the design of different coding schemes. Due to the heterogeneity of the packet sizes, our progressive shortening scheme is the first RLNC-based approach that generates and recodes unequal-sized coded packets. Another of our solutions is deterministic shifting that reduces the overall number of transmitted packets. Moreover, the RaSOR scheme employs coding using XORing operations on shifted packets, without the need for coding coefficients, thus favoring linear encoding and decoding complexities. Another facet of IoT applications can be found in sensory data known to be highly correlated, where compressed sensing is a potential approach to reduce the overall transmissions. In such scenarios, network coding can also help. Our proposed joint compressed sensing and real network coding design fully exploit the correlations in cluster-based wireless sensor networks, such as the ones advocated by Industry 4.0. This design focused on performing one-step decoding to reduce the computational complexities and delays of the reconstruction process at the receiver and investigates the effectiveness of combined compressed sensing and network coding

    Compressed Sensing in Wireless Sensor Networks without Explicit Position Information

    Get PDF
    Reconstruction in compressed sensing relies on knowledge of a sparsifying transform. In a setting where a sink reconstructs a field based on measurements from a wireless sensor network, this transform is tied to the locations of the individual sensors, which may not be available to the sink during reconstruction. In contrast to previous works, we do not assume that the sink knows the position of each sensor to build up the sparsifying basis. Instead, we propose the use of spatial interpolation based on a predetermined sparsifying transform, followed by random linear projections and ratio consensus using local communication between sensors. For this proposed architecture, we upper bound the reconstruction error induced by spatial interpolation, as well as the reconstruction error induced by distributed compression. These upper bounds are then utilized to analyze the communication cost tradeoff between communication to the sink and sensor-to-sensor communication

    Energy Efficient and Loss Resilient Wireless Camera Sensor Networks

    Get PDF
    Data loss during transmission and a limited energy source are two main challenges that need to be dealt with in embedded sensor networks. These problems are even more severe in wireless camera sensor networks (WCSNs), owing to the large data size. Energy spent in idle event monitoring and communication, turn out to be the two biggest sources of energy consumption. An event-based sleep and wake-up mechanism is a suitable option for surveillance applications with long event arrival intervals. With proper use of different hardware and software functionalities an efficient event-based wake-up mechanism can be implemented. Compressive Sampling (CS) turns out to be an effective solution in reducing the transmission costs and also provides a loss resilient mechanism. It involves under-sampling the data through linear random projections which allows transmission of lesser bits than the original. The randomness in sampling makes the system tolerant to losses without requiring transmission of redundant parity bits. Both these characteristics help us on saving up on energy. The original signal can be recovered from this compressively sampled measurements using l1l_1 optimization. However, using conventional CS on embedded WCSNs has some implementation related challenges. The processor memory and the recovery time of l1l_1 optimization, are non-linear with respect to the data size and hence large image sizes may hinder the applicability of CS in practical cases. In this thesis, a framework for practical implementation of these energy saving strategies has been provided. Issues that affect the practical usability of CS, namely recovery time and memory usage have been discussed and the solutions have been provided, backed up by a number of experimental results. Significant improvements have been observed in the implemented schemes over traditional schemes in terms of recovery time. All the suggested schemes have been implemented on an actual Imote2 sensor node test-bed. This provides a platform for future research and testing of different aspects of WCSNs.School of Electrical & Computer Engineerin

    Compressed Sensing in Wireless Sensor Networks Without Explicit Position Information

    Full text link

    Optimizing Network Coding Algorithms for Multiple Applications.

    Get PDF
    Deviating from the archaic communication approach of treating information as a fluid moving through pipes, the concepts of Network Coding (NC) suggest that optimal throughput of a multicast network can be achieved by processing information at individual network nodes. However, existing challenges to harness the advantages of NC concepts for practical applications have prevented the development of NC into an effective solution to increase the performance of practical communication networks. In response, the research work presented in this thesis proposes cross-layer NC solutions to increase the network throughput of data multicast as well as video quality of video multicast applications. First, three algorithms are presented to improve the throughput of NC enabled networks by minimizing the NC coefficient vector overhead, optimizing the NC redundancy allocation and improving the robustness of NC against bursty packet losses. Considering the fact that majority of network traffic occupies video, rest of the proposed NC algorithms are content-aware and are optimized for both data and video multicast applications. A set of content and network-aware optimization algorithms, which allocate redundancies for NC considering content properties as well as the network status, are proposed to efficiently multicast data and video across content delivery networks. Furthermore content and channel-aware joint channel and network coding algorithms are proposed to efficiently multicast data and video across wireless networks. Finally, the possibilities of performing joint source and network coding are explored to increase the robustness of high volume video multicast applications. Extensive simulation studies indicate significant improvements with the proposed algorithms to increase the network throughput and video quality over related state-of-the-art solutions. Hence, it is envisaged that the proposed algorithms will contribute to the advancement of data and video multicast protocols in the future communication networks

    One Video Stream to Serve Diverse Receivers

    Get PDF
    The fundamental problem of wireless video multicast is to scalably serve multiple receivers which may have very different channel characteristics. Ideally, one would like to broadcast a single stream that allows each receiver to benefit from all correctly received bits to improve its video quality. We introduce Digital Rain, a new approach to wireless video multicast that adapts to channel characteristics without any need for receiver feedback or variable codec rates. Users that capture more packets or have fewer bit errors naturally see higher video quality. Digital Rain departs from current approaches in two ways: 1) It allows a receiver to exploit video packets that may contain bit errors; 2) It builds on the theory of compressed sensing to develop robust video encoding and decoding algorithms that degrade smoothly with bit errors and packet loss. Implementation results from an indoor wireless testbed show that Digital Rain significantly improves the received video quality and the number of supported receivers
    corecore