1,241 research outputs found

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Cooperative games with incomplete information for secondary base stations in cognitive radio networks

    Get PDF
    Cognitive radio (CR) technology is considered to be an effective solution for enhancing overall spectrum efficiency. Using CR technology fully involves the providing of incentives to Primary Radio Networks (PRNs) and revenue to the service provider so that Secondary Base Stations (SBSs) may utilize PRN spectrum bands accordingly. In this paper, a cooperative games with incomplete information for SBSs in a CR network is presented. Each SBS can cooperate with neighboring SBSs in order to improve its view of the spectrum. Moreover, proposed game-theory models assume that the devices have incomplete information about their components, meaning that some players do not completely know the structure of the game. Using the proposed algorithm, each SBS can leave or join the coalition while maximizing its overall utility. The simulation results illustrate that the proposed algorithm allows us to reduce the average payoff per SBS up to 140% relative to a CR network without cooperation among SBSs

    A Survey on Dynamic Spectrum Access Techniques in Cognitive Radio Networks

    Get PDF
    The idea of Cognitive Radio (CR) is to share the spectrum between a user called primary, and a user called secondary. Dynamic Spectrum Access (DSA) is a new spectrum sharing paradigm in cognitive radio that allows secondary users to access the abundant spectrum holes in the licensed spectrum bands. DSA is an auspicious technology to alleviate the spectrum scarcity problem and increase spectrum utilization. While DSA has attracted many research efforts recently, in this paper, a survey of spectrum access techniques using cooperation and competition to solve the problem of spectrum allocation in cognitive radio networks is presented

    Coalitional Games in Partition Form for Joint Spectrum Sensing and Access in Cognitive Radio Networks

    Full text link
    Unlicensed secondary users (SUs) in cognitive radio networks are subject to an inherent tradeoff between spectrum sensing and spectrum access. Although each SU has an incentive to sense the primary user (PU) channels for locating spectrum holes, this exploration of the spectrum can come at the expense of a shorter transmission time, and, hence, a possibly smaller capacity for data transmission. This paper investigates the impact of this tradeoff on the cooperative strategies of a network of SUs that seek to cooperate in order to improve their view of the spectrum (sensing), reduce the possibility of interference among each other, and improve their transmission capacity (access). The problem is modeled as a coalitional game in partition form and an algorithm for coalition formation is proposed. Using the proposed algorithm, the SUs can make individual distributed decisions to join or leave a coalition while maximizing their utilities which capture the average time spent for sensing as well as the capacity achieved while accessing the spectrum. It is shown that, by using the proposed algorithm, the SUs can self-organize into a network partition composed of disjoint coalitions, with the members of each coalition cooperating to jointly optimize their sensing and access performance. Simulation results show the performance improvement that the proposed algorithm yields with respect to the non-cooperative case. The results also show how the algorithm allows the SUs to self-adapt to changes in the environment such as the change in the traffic of the PUs, or slow mobility.Comment: IEEE Journal on Selected Topics in Signal Processing (JSTSP), Special Issue on Game Theory, to appear, 201

    A Cooperative Bayesian Nonparametric Framework for Primary User Activity Monitoring in Cognitive Radio Network

    Full text link
    This paper introduces a novel approach that enables a number of cognitive radio devices that are observing the availability pattern of a number of primary users(PUs), to cooperate and use \emph{Bayesian nonparametric} techniques to estimate the distributions of the PUs' activity pattern, assumed to be completely unknown. In the proposed model, each cognitive node may have its own individual view on each PU's distribution, and, hence, seeks to find partners having a correlated perception. To address this problem, a coalitional game is formulated between the cognitive devices and an algorithm for cooperative coalition formation is proposed. It is shown that the proposed coalition formation algorithm allows the cognitive nodes that are experiencing a similar behavior from some PUs to self-organize into disjoint, independent coalitions. Inside each coalition, the cooperative cognitive nodes use a combination of Bayesian nonparametric models such as the Dirichlet process and statistical goodness of fit techniques in order to improve the accuracy of the estimated PUs' activity distributions. Simulation results show that the proposed algorithm significantly improves the estimates of the PUs' distributions and yields a performance advantage, in terms of reduction of the average achieved Kullback-Leibler distance between the real and the estimated distributions, reaching up to 36.5% relative the non-cooperative estimates. The results also show that the proposed algorithm enables the cognitive nodes to adapt their cooperative decisions when the actual PUs' distributions change due to, for example, PU mobility.Comment: IEEE Journal on Selected Areas in Communications (JSAC), to appear, 201

    Game Theory for Multi-Access Edge Computing:Survey, Use Cases, and Future Trends

    Get PDF
    Game theory (GT) has been used with significant success to formulate, and either design or optimize, the operation of many representative communications and networking scenarios. The games in these scenarios involve, as usual, diverse players with conflicting goals. This paper primarily surveys the literature that has applied theoretical games to wireless networks, emphasizing use cases of upcoming multiaccess edge computing (MEC). MEC is relatively new and offers cloud services at the network periphery, aiming to reduce service latency backhaul load, and enhance relevant operational aspects such as quality of experience or security. Our presentation of GT is focused on the major challenges imposed by MEC services over the wireless resources. The survey is divided into classical and evolutionary games. Then, our discussion proceeds to more specific aspects which have a considerable impact on the game's usefulness, namely, rational versus evolving strategies, cooperation among players, available game information, the way the game is played (single turn, repeated), the game's model evaluation, and how the model results can be applied for both optimizing resource-constrained resources and balancing diverse tradeoffs in real edge networking scenarios. Finally, we reflect on lessons learned, highlighting future trends and research directions for applying theoretical model games in upcoming MEC services, considering both network design issues and usage scenarios
    corecore