144 research outputs found

    Files as first-class objects in fault -tolerant concurrent systems

    Get PDF
    Concurrent systems are used in applications where multiple processors are needed to complete tasks within a reasonable amount of time, or where the data sets involved will not fit within the main memory of a single computer. Because of their reliance on multiple machines, such systems are proportionally more vulnerable to both hardware and software induced failures. Fault-tolerance schemes are used to recover some earlier consistent state of the system after such a failure.;One important technique used to achieve fault-tolerance is checkpointing and rollback-recovery. In this thesis, we present a method for efficiently and transparently incorporating the part of the process state contained in the file system into process checkpoints, and we show how recovery of consistent versions of the file system and processes may be done after a failure. We present the details of a prototype system which implements our method.;We show that by using the special properties of the log-structured file system, the class of programs which are amenable to checkpointing and rollback-recovery schemes can be expanded to include those that use files. We impose no a priori restriction on the types of file system operations that can be done, and we demonstrate that our scheme does not impose significant failure-free overhead on the computation

    Resource management for extreme scale high performance computing systems in the presence of failures

    Get PDF
    2018 Summer.Includes bibliographical references.High performance computing (HPC) systems, such as data centers and supercomputers, coordinate the execution of large-scale computation of applications over tens or hundreds of thousands of multicore processors. Unfortunately, as the size of HPC systems continues to grow towards exascale complexities, these systems experience an exponential growth in the number of failures occurring in the system. These failures reduce performance and increase energy use, reducing the efficiency and effectiveness of emerging extreme-scale HPC systems. Applications executing in parallel on individual multicore processors also suffer from decreased performance and increased energy use as a result of applications being forced to share resources, in particular, the contention from multiple application threads sharing the last-level cache causes performance degradation. These challenges make it increasingly important to characterize and optimize the performance and behavior of applications that execute in these systems. To address these challenges, in this dissertation we propose a framework for intelligently characterizing and managing extreme-scale HPC system resources. We devise various techniques to mitigate the negative effects of failures and resource contention in HPC systems. In particular, we develop new HPC resource management techniques for intelligently utilizing system resources through the (a) optimal scheduling of applications to HPC nodes and (b) the optimal configuration of fault resilience protocols. These resource management techniques employ information obtained from historical analysis as well as theoretical and machine learning methods for predictions. We use these data to characterize system performance, energy use, and application behavior when operating under the uncertainty of performance degradation from both system failures and resource contention. We investigate how to better characterize and model the negative effects from system failures as well as application co-location on large-scale HPC computing systems. Our analysis of application and system behavior also investigates: the interrelated effects of network usage of applications and fault resilience protocols; checkpoint interval selection and its sensitivity to system parameters for various checkpoint-based fault resilience protocols; and performance comparisons of various promising strategies for fault resilience in exascale-sized systems

    Locality-driven checkpoint and recovery

    Get PDF
    Checkpoint and recovery are important fault-tolerance techniques for distributed systems. The two categories of existing strategies incur unacceptable performance cost either at run time or upon failure recovery, when applied to large-scale distributed systems. In particular, the large number of messages and processes in these systems causes either considerable checkpoint as well as logging overhead, or catastrophic global-wise recovery effect. This thesis proposes a locality-driven strategy for efficiently checkpointing and recovering such systems with both affordable runtime cost and controllable failure recoverability. Messages establish dependencies between distributed processes, which can be either preserved by coordinated checkpoints or removed via logging. Existing strategies enforce a uniform handling policy for all message dependencies, and hence gains advantage at one end but bears disadvantage at the other. In this thesis, a generic theory of Quasi-Atomic Recovery has been formulated to accommodate message handling requirements of both kinds, and to allow using different message handling methods together. Quasi-atomicity of recovery blocks implies proper confinement of recoveries, and thus enables localization of checkpointing and recovery around such a block and consequently a hybrid strategy with combined advantages from both ends. A strategy of group checkpointing with selective logging has been proposed, based on the observation of message localization around 'locality regions' in distributed systems. In essence, a group-wise coordinated checkpoint is created around such a region and only the few inter-region messages are logged subsequently. Runtime overhead is optimized due to largely reduced logging efforts, and recovery spread is as localized as region-wise. Various protocols have been developed to provide trade-offs between flexibility and performance. Also proposed is the idea of process clone that can be used to effectively remove program-order recovery dependencies among successive group checkpoints and thus to stop inter-group recovery spread. Distributed executions exhibit locality of message interactions. Such locality originates from resolving distributed dependency localization via message passing, and appears as a hierarchical 'region-transition' pattern. A bottom-up approach has been proposed to identify those regions, by detecting popular recurrence patterns from individual processes as 'locality intervals', and then composing them into 'locality regions' based on their tight message coupling relations between each other. Experiments conducted on real-life applications have shown the existence of hierarchical locality regions and have justified the feasibility of this approach. Performance optimization of group checkpoint strategies has to do with their uses of locality. An abstract performance measure has been-proposed to properly integrate both runtime overhead and failure recoverability in a region-wise marner. Taking this measure as the optimization objective, a greedy heuristic has been introduced to decompose a given distributed execution into optimized regions. Analysis implies that an execution pattern with good locality leads to good optimized performance, and the locality pattern itself can serve as a good candidate for the optimal decomposition. Consequently, checkpoint protocols have been developed to efficiently identify optimized regions in such an execution, with assistance of either design-time or runtime knowledge

    Platform for reliable computing on clusters using group communications

    Full text link
    Shared clusters represent an excellent platform for the execution of parallel applications given their low price/performance ratio and the presence of cluster infrastructure in many organisations. The focus of recent research efforts are on parallelism management, transport and efficient access to resources, and making clusters easy to use. In this thesis, we examine reliable parallel computing on clusters. The aim of this research is to demonstrate the feasibility of developing an operating system facility providing transport fault tolerance using existing, enhanced and newly built operating system services for supporting parallel applications. In particular, we use existing process duplication and process migration services, and synthesise a group communications facility for use in a transparent checkpointing facility. This research is carried out using the methods of experimental computer science. To provide a foundation for the synthesis of the group communications and checkpointing facilities, we survey and review related work in both fields. For group communications, we examine the V Distributed System, the x-kernel and Psync, the ISIS Toolkit, and Horus. We identify a need for services that consider the placement of processes on computers in the cluster. For Checkpointing, we examine Manetho, KeyKOS, libckpt, and Diskless Checkpointing. We observe the use of remote computer memories for storing checkpoints, and the use of copy-on-write mechanisms to reduce the time to create a checkpoint of a process. We propose a group communications facility providing two sets of services: user-oriented services and system-oriented services. User-oriented services provide transparency and target application. System-oriented services supplement the user-oriented services for supporting other operating systems services and do not provide transparency. Additional flexibility is achieved by providing delivery and ordering semantics independently. An operating system facility providing transparent checkpointing is synthesised using coordinated checkpointing. To ensure a consistent set of checkpoints are generated by the facility, instead of blindly blocking the processes of a parallel application, only non-deterministic events are blocked. This allows the processes of the parallel application to continue execution during the checkpoint operation. Checkpoints are created by adapting process duplication mechanisms, and checkpoint data is transferred to remote computer memories and disk for storage using the mechanisms of process migration. The services of the group communications facility are used to coordinate the checkpoint operation, and to transport checkpoint data to remote computer memories and disk. Both the group communications facility and the checkpointing facility have been implemented in the GENESIS cluster operating system and provide proof-of-concept. GENESIS uses a microkernel and client-server based operating system architecture, and is demonstrated to provide an appropriate environment for the development of these facilities. We design a number of experiments to test the performance of both the group communications facility and checkpointing facility, and to provide proof-of-performance. We present our approach to testing, the challenges raised in testing the facilities, and how we overcome them. For group communications, we examine the performance of a number of delivery semantics. Good speed-ups are observed and system-oriented group communication services are shown to provide significant performance advantages over user-oriented semantics in the presence of packet loss. For checkpointing, we examine the scalability of the facility given different levels of resource usage and a variable number of computers. Low overheads are observed for checkpointing a parallel application. It is made clear by this research that the microkernel and client-server based cluster operating system provide an ideal environment for the development of a high performance group communications facility and a transparent checkpointing facility for generating a platform for reliable parallel computing on clusters

    On efficient temporal subgraph query processing

    Get PDF

    Teadusarvutuse algoritmide taandamine hajusarvutuse raamistikele

    Get PDF
    Teadusarvutuses kasutatakse arvuteid ja algoritme selleks, et lahendada probleeme erinevates reaalteadustes nagu geneetika, bioloogia ja keemia. Tihti on eesmärgiks selliste loodusnähtuste modelleerimine ja simuleerimine, mida päris keskkonnas oleks väga raske uurida. Näiteks on võimalik luua päikesetormi või meteoriiditabamuse mudel ning arvutisimulatsioonide abil hinnata katastroofi mõju keskkonnale. Mida keerulisemad ja täpsemad on sellised simulatsioonid, seda rohkem arvutusvõimsust on vaja. Tihti kasutatakse selleks suurt hulka arvuteid, mis kõik samaaegselt töötavad ühe probleemi kallal. Selliseid arvutusi nimetatakse paralleel- või hajusarvutusteks. Hajusarvutuse programmide loomine on aga keeruline ning nõuab palju rohkem aega ja ressursse, kuna vaja on sünkroniseerida erinevates arvutites samaaegselt tehtavat tööd. On loodud mitmeid tarkvararaamistikke, mis lihtsustavad seda tööd automatiseerides osa hajusprogrammeerimisest. Selle teadustöö eesmärk oli uurida selliste hajusarvutusraamistike sobivust keerulisemate teadusarvutuse algoritmide jaoks. Tulemused näitasid, et olemasolevad raamistikud on üksteisest väga erinevad ning neist ükski ei ole sobiv kõigi erinevat tüüpi algoritmide jaoks. Mõni raamistik on sobiv ainult lihtsamate algoritmide jaoks; mõni ei sobi olukorras, kus andmed ei mahu arvutite mällu. Algoritmi jaoks kõige sobivama hajusarvutisraamistiku valimine võib olla väga keeruline ülesanne, kuna see nõuab olemasolevate raamistike uurimist ja rakendamist. Sellele probleemile lahendust otsides otsustati luua dünaamiline algoritmide modelleerimise rakendus (DAMR), mis oskab simuleerida algoritmi implementatsioone erinevates hajusarvutusraamistikes. DAMR aitab hinnata milline hajusraamistik on kõige sobivam ette antud algoritmi jaoks, ilma algoritmi reaalselt ühegi hajusraamistiku peale implementeerimata. Selle uurimustöö peamine panus on hajusarvutusraamistike kasutuselevõtu lihtsamaks tegemine teadlastele, kes ei ole varem nende kasutamisega kokku puutunud. See peaks märkimisväärselt aega ja ressursse kokku hoidma, kuna ei pea ükshaaval kõiki olemasolevaid hajusraamistikke tundma õppima ja rakendama.Scientific computing uses computers and algorithms to solve problems in various sciences such as genetics, biology and chemistry. Often the goal is to model and simulate different natural phenomena which would otherwise be very difficult to study in real environments. For example, it is possible to create a model of a solar storm or a meteor hit and run computer simulations to assess the impact of the disaster on the environment. The more sophisticated and accurate the simulations are the more computing power is required. It is often necessary to use a large number of computers, all working simultaneously on a single problem. These kind of computations are called parallel or distributed computing. However, creating distributed computing programs is complicated and requires a lot more time and resources, because it is necessary to synchronize different computers working at the same time. A number of software frameworks have been created to simplify this process by automating part of a distributed programming. The goal of this research was to assess the suitability of such distributed computing frameworks for complex scientific computing algorithms. The results showed that existing frameworks are very different from each other and none of them are suitable for all different types of algorithms. Some frameworks are only suitable for simple algorithms; others are not suitable when data does not fit into the computer memory. Choosing the most appropriate distributed computing framework for an algorithm can be a very complex task, because it requires studying and applying the existing frameworks. While searching for a solution to this problem, it was decided to create a Dynamic Algorithms Modelling Application (DAMA), which is able to simulate the implementation of the algorithm in different distributed computing frameworks. DAMA helps to estimate which distributed framework is the most appropriate for a given algorithm, without actually implementing it in any of the available frameworks. This main contribution of this study is simplifying the adoption of distributed computing frameworks for researchers who are not yet familiar with using them. It should save significant time and resources as it is not necessary to study each of the available distributed computing frameworks in detail

    Design Optimization of Mixed-Criticality Real-Time Applications on Cost-Constrained Partitioned Architectures

    Get PDF
    Abstract—In this paper we are interested to implement mixed-criticality hard real-time applications on a given heterogeneous distributed architecture. Applications have different criticality levels, captured by their Safety-Integrity Level (SIL), and are scheduled using static-cyclic scheduling. Mixed-criticality tasks can be integrated onto the same architecture only if there is enough spatial and temporal separation among them. We consider that the separation is provided by partitioning, such that applications run in separate partitions, and each partition is allocated several time slots on a processor. Tasks of different SILs can share a partition only if they are all elevated to the highest SIL among them. Such elevation leads to increased development costs. We are interested to determine (i) the mapping of tasks to processors, (ii) the assignment of tasks to partitions, (iii) the sequence and size of the time slots on each processor and (iv) the schedule tables, such that all the applications are schedulable and the development costs are minimized. We have proposed a Tabu Search-based approach to solve this optimization problem. The proposed algorithm has been evaluated using several synthetic and real-life benchmarks. I

    Improving the Productivity of Volunteer Computing

    Get PDF
    The price of computers has dropped drastically over the past years enabling many households to have at least one computer. At the same time, the performance of computers has skyrocketed, far surpassing what a typical user needs, and most of the computational power of personal computers is wasted. Volunteer computing projects attempt to use this wasted computational power in order to solve problems that would otherwise be computationally infeasible. Some of these problems include medical applications like searching for cures for AIDS and cancer. However, the number of volunteer computing projects is increasing rapidly, requiring improvements in the field of volunteer computing to enable the increasing number of volunteer projects to continue making significant progress. This dissertation examines two ways to increase the productivity of volunteer computing: using the volunteered CPU cycles more effectively and exploring ways to increase the amount of CPU cycles that are donated. Each of the existing volunteer computing projects uses one of two task retrieval policies to enable the volunteered computers participating in projects to retrieve work. This dissertation compares the amount of work completed by the volunteered computers participating in projects based on which of the two task retrieval techniques the project employs. Additional task retrieval policies are also proposed and evaluated. The most commonly used task retrieval policy is shown to be less effective than both the less frequently used policy and a proposed policy. The potential that video game consoles have to be used for volunteer computing is explored, as well as the potential benefits of constructing different types of volunteer computing clients, rather than the most popular client implementation: the screensaver. In addition to examining methods of increasing the productivity of volunteer computing, 140 traces of computer usage detailing when computers are available to participate in volunteer computing is collected and made publicly available. Volunteer computing project-specific information that can be used in researching how to improve volunteer computing is collected and combined into the first summary of which we are aware

    Transactional Data Structures

    Get PDF
    corecore