18,954 research outputs found

    A Low-Complexity Approach to Distributed Cooperative Caching with Geographic Constraints

    Get PDF
    We consider caching in cellular networks in which each base station is equipped with a cache that can store a limited number of files. The popularity of the files is known and the goal is to place files in the caches such that the probability that a user at an arbitrary location in the plane will find the file that she requires in one of the covering caches is maximized. We develop distributed asynchronous algorithms for deciding which contents to store in which cache. Such cooperative algorithms require communication only between caches with overlapping coverage areas and can operate in asynchronous manner. The development of the algorithms is principally based on an observation that the problem can be viewed as a potential game. Our basic algorithm is derived from the best response dynamics. We demonstrate that the complexity of each best response step is independent of the number of files, linear in the cache capacity and linear in the maximum number of base stations that cover a certain area. Then, we show that the overall algorithm complexity for a discrete cache placement is polynomial in both network size and catalog size. In practical examples, the algorithm converges in just a few iterations. Also, in most cases of interest, the basic algorithm finds the best Nash equilibrium corresponding to the global optimum. We provide two extensions of our basic algorithm based on stochastic and deterministic simulated annealing which find the global optimum. Finally, we demonstrate the hit probability evolution on real and synthetic networks numerically and show that our distributed caching algorithm performs significantly better than storing the most popular content, probabilistic content placement policy and Multi-LRU caching policies.Comment: 24 pages, 9 figures, presented at SIGMETRICS'1

    Correlation-Aware Distributed Caching and Coded Delivery

    Full text link
    Cache-aided coded multicast leverages side information at wireless edge caches to efficiently serve multiple groupcast demands via common multicast transmissions, leading to load reductions that are proportional to the aggregate cache size. However, the increasingly unpredictable and personalized nature of the content that users consume challenges the efficiency of existing caching-based solutions in which only exact content reuse is explored. This paper generalizes the cache-aided coded multicast problem to a source compression with distributed side information problem that specifically accounts for the correlation among the content files. It is shown how joint file compression during the caching and delivery phases can provide load reductions that go beyond those achieved with existing schemes. This is accomplished through a lower bound on the fundamental rate-memory trade-off as well as a correlation-aware achievable scheme, shown to significantly outperform state-of-the-art correlation-unaware solutions, while approaching the limiting rate-memory trade-off.Comment: In proceeding of IEEE Information Theory Workshop (ITW), 201

    Cache-Aided Coded Multicast for Correlated Sources

    Full text link
    The combination of edge caching and coded multicasting is a promising approach to improve the efficiency of content delivery over cache-aided networks. The global caching gain resulting from content overlap distributed across the network in current solutions is limited due to the increasingly personalized nature of the content consumed by users. In this paper, the cache-aided coded multicast problem is generalized to account for the correlation among the network content by formulating a source compression problem with distributed side information. A correlation-aware achievable scheme is proposed and an upper bound on its performance is derived. It is shown that considerable load reductions can be achieved, compared to state of the art correlation-unaware schemes, when caching and delivery phases specifically account for the correlation among the content files.Comment: In proceeding of IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC), 201

    Efficient Proactive Caching for Supporting Seamless Mobility

    Full text link
    We present a distributed proactive caching approach that exploits user mobility information to decide where to proactively cache data to support seamless mobility, while efficiently utilizing cache storage using a congestion pricing scheme. The proposed approach is applicable to the case where objects have different sizes and to a two-level cache hierarchy, for both of which the proactive caching problem is hard. Additionally, our modeling framework considers the case where the delay is independent of the requested data object size and the case where the delay is a function of the object size. Our evaluation results show how various system parameters influence the delay gains of the proposed approach, which achieves robust and good performance relative to an oracle and an optimal scheme for a flat cache structure.Comment: 10 pages, 9 figure

    Secure Partial Repair in Wireless Caching Networks with Broadcast Channels

    Full text link
    We study security in partial repair in wireless caching networks where parts of the stored packets in the caching nodes are susceptible to be erased. Let us denote a caching node that has lost parts of its stored packets as a sick caching node and a caching node that has not lost any packet as a healthy caching node. In partial repair, a set of caching nodes (among sick and healthy caching nodes) broadcast information to other sick caching nodes to recover the erased packets. The broadcast information from a caching node is assumed to be received without any error by all other caching nodes. All the sick caching nodes then are able to recover their erased packets, while using the broadcast information and the nonerased packets in their storage as side information. In this setting, if an eavesdropper overhears the broadcast channels, it might obtain some information about the stored file. We thus study secure partial repair in the senses of information-theoretically strong and weak security. In both senses, we investigate the secrecy caching capacity, namely, the maximum amount of information which can be stored in the caching network such that there is no leakage of information during a partial repair process. We then deduce the strong and weak secrecy caching capacities, and also derive the sufficient finite field sizes for achieving the capacities. Finally, we propose optimal secure codes for exact partial repair, in which the recovered packets are exactly the same as erased packets.Comment: To Appear in IEEE Conference on Communication and Network Security (CNS

    Optimizing The Spatial Content Caching Distribution for Device-to-Device Communications

    Full text link
    We study the optimal geographic content placement problem for device-to-device (D2D) networks in which the content popularity follows the Zipf law. We consider a D2D caching model where the locations of the D2D users (caches) are modeled by a Poisson point process (PPP) and have limited communication range and finite storage. Unlike most related work which assumes independent placement of content, and does not capture the locations of the users, we model the spatial properties of the network including spatial correlation in terms of the cached content. We propose two novel spatial correlation models, the exchangeable content model and a Mat\'{e}rn (MHC) content placement model, and analyze and optimize the \emph{hit probability}, which is the probability of a given D2D node finding a desired file at another node within its communication range. We contrast these results to the independent placement model, and show that exchangeable placement performs worse. On the other hand, MHC placement yields a higher cache hit probability than independent placement for small cache sizes.Comment: appeared in Proc. IEEE Intl. Symposium on Info. Theory, Barcelona, Spain, July 201
    • …
    corecore