552 research outputs found

    Distributed Beamforming in Wireless Multiuser Relay-Interference Networks with Quantized Feedback

    Full text link
    We study quantized beamforming in wireless amplify-and-forward relay-interference networks with any number of transmitters, relays, and receivers. We design the quantizer of the channel state information to minimize the probability that at least one receiver incorrectly decodes its desired symbol(s). Correspondingly, we introduce a generalized diversity measure that encapsulates the conventional one as the first-order diversity. Additionally, it incorporates the second-order diversity, which is concerned with the transmitter power dependent logarithmic terms that appear in the error rate expression. First, we show that, regardless of the quantizer and the amount of feedback that is used, the relay-interference network suffers a second-order diversity loss compared to interference-free networks. Then, two different quantization schemes are studied: First, using a global quantizer, we show that a simple relay selection scheme can achieve maximal diversity. Then, using the localization method, we construct both fixed-length and variable-length local (distributed) quantizers (fLQs and vLQs). Our fLQs achieve maximal first-order diversity, whereas our vLQs achieve maximal diversity. Moreover, we show that all the promised diversity and array gains can be obtained with arbitrarily low feedback rates when the transmitter powers are sufficiently large. Finally, we confirm our analytical findings through simulations.Comment: 41 pages, 14 figures, submitted to IEEE Transactions on Information Theory, July 2010. This work was presented in part at IEEE Global Communications Conference (GLOBECOM), Nov. 200

    The Necessity of Relay Selection

    Full text link
    We determine necessary conditions on the structure of symbol error rate (SER) optimal quantizers for limited feedback beamforming in wireless networks with one transmitter-receiver pair and R parallel amplify-and-forward relays. We call a quantizer codebook "small" if its cardinality is less than R, and "large" otherwise. A "d-codebook" depends on the power constraints and can be optimized accordingly, while an "i-codebook" remains fixed. It was previously shown that any i-codebook that contains the single-relay selection (SRS) codebook achieves the full-diversity order, R. We prove the following: Every full-diversity i-codebook contains the SRS codebook, and thus is necessarily large. In general, as the power constraints grow to infinity, the limit of an optimal large d-codebook contains an SRS codebook, provided that it exists. For small codebooks, the maximal diversity is equal to the codebook cardinality. Every diversity-optimal small i-codebook is an orthogonal multiple-relay selection (OMRS) codebook. Moreover, the limit of an optimal small d-codebook is an OMRS codebook. We observe that SRS is nothing but a special case of OMRS for codebooks with cardinality equal to R. As a result, we call OMRS as "the universal necessary condition" for codebook optimality. Finally, we confirm our analytical findings through simulations.Comment: 29 pages, 4 figure

    Grassmannian Beamforming for MIMO Amplify-and-Forward Relaying

    Full text link
    In this paper, we derive the optimal transmitter/ receiver beamforming vectors and relay weighting matrix for the multiple-input multiple-output amplify-and-forward relay channel. The analysis is accomplished in two steps. In the first step, the direct link between the transmitter (Tx) and receiver (Rx) is ignored and we show that the transmitter and the relay should map their signals to the strongest right singular vectors of the Tx-relay and relay-Rx channels. Based on the distributions of these vectors for independent identically distributed (i.i.d.) Rayleigh channels, the Grassmannian codebooks are used for quantizing and sending back the channel information to the transmitter and the relay. The simulation results show that even a few number of bits can considerably increase the link reliability in terms of bit error rate. For the second step, the direct link is considered in the problem model and we derive the optimization problem that identifies the optimal Tx beamforming vector. For the i.i.d Rayleigh channels, we show that the solution to this problem is uniformly distributed on the unit sphere and we justify the appropriateness of the Grassmannian codebook (for determining the optimal beamforming vector), both analytically and by simulation. Finally, a modified quantizing scheme is presented which introduces a negligible degradation in the system performance but significantly reduces the required number of feedback bits.Comment: Submitted to IEEE Journal of Selected Areas in Communications, Special Issue on Exploiting Limited Feedback in Tomorrows Wireless Communication Network

    Filter-And-Forward Distributed Beamforming in Relay Networks with Frequency Selective Fading

    Full text link
    A new approach to distributed cooperative beamforming in relay networks with frequency selective fading is proposed. It is assumed that all the relay nodes are equipped with finite impulse response (FIR) filters and use a filter-and-forward (FF) strategy to compensate for the transmitter-to-relay and relay-to-destination channels. Three relevant half-duplex distributed beamforming problems are considered. The first problem amounts to minimizing the total relay transmitted power subject to the destination quality-of-service (QoS) constraint. In the second and third problems, the destination QoS is maximized subject to the total and individual relay transmitted power constraints, respectively. For the first and second problems, closed-form solutions are obtained, whereas the third problem is solved using convex optimization. The latter convex optimization technique can be also directly extended to the case when the individual and total power constraints should be jointly taken into account. Simulation results demonstrate that in the frequency selective fading case, the proposed FF approach provides substantial performance improvements as compared to the commonly used amplify-and-forward (AF) relay beamforming strategy.Comment: Submitted to IEEE Trans. on Signal Processing on 8 July 200

    Interference Alignment with Limited Feedback on Two-cell Interfering Two-User MIMO-MAC

    Full text link
    In this paper, we consider a two-cell interfering two-user multiple-input multiple-output multiple access channel (MIMO-MAC) with limited feedback. We first investigate the multiplexing gain of such channel when users have perfect channel state information at transmitter (CSIT) by exploiting an interference alignment scheme. In addition, we propose a feedback framework for the interference alignment in the limited feedback system. On the basis of the proposed feedback framework, we analyze the rate gap loss and it is shown that in order to keep the same multiplexing gain with the case of perfect CSIT, the number of feedback bits per receiver scales as B(M ⁣1 ⁣) ⁣log2(SNR)+CB \geq (M\!-1\!)\!\log_{2}(\textsf{SNR})+C, where MM and CC denote the number of transmit antennas and a constant, respectively. Throughout the simulation results, it is shown that the sum-rate performance coincides with the derived results.Comment: 6 pages, 2 figures, Submitted ICC 201
    corecore