327 research outputs found

    Efficient Invariant Features for Sensor Variability Compensation in Speaker Recognition

    Get PDF
    In this paper, we investigate the use of invariant features for speaker recognition. Owing to their characteristics, these features are introduced to cope with the difficult and challenging problem of sensor variability and the source of performance degradation inherent in speaker recognition systems. Our experiments show: (1) the effectiveness of these features in match cases; (2) the benefit of combining these features with the mel frequency cepstral coefficients to exploit their discrimination power under uncontrolled conditions (mismatch cases). Consequently, the proposed invariant features result in a performance improvement as demonstrated by a reduction in the equal error rate and the minimum decision cost function compared to the GMM-UBM speaker recognition systems based on MFCC features

    Automatic Speaker Recognition System in Adverse Conditions — Implication of Noise and Reverberation on System Performance

    Get PDF
    Speaker recognition has been developed and evolved over the past few decades into a supposedly mature technique. Existing methods typically utilize robust features extracted from clean speech. In real-world applications, especially security and forensics related ones, reliability of recognition becomes crucial, meanwhile limited speech samples and adverse acoustic conditions, most notably noise and reverberation, impose further complications. This paper is presented from a study into the behavior of typical speaker recognition systems in adverse retrieval phases. Following a brief review, a speaker recognition system was implemented using the MSR Identity Toolbox by Microsoft. Validation tests were carried out with clean speech and the speech contaminated by noise and/or reverberation of varying degrees. The image source method was adopted to take into account real acoustic conditions in the spaces. Statistical relationships between recognition accuracy and signal to noise ratios or reverberation times have therefore been established. Results show noise and reverberation can, to different extents, degrade the performance of recognition. Both reverberation time and direct to reverberation ratio can affect recognition accuracy. The findings may be used to estimate the accuracy of speaker recognition and further determine the likelihood a particular speaker

    VOICE BIOMETRICS UNDER MISMATCHED NOISE CONDITIONS

    Get PDF
    This thesis describes research into effective voice biometrics (speaker recognition) under mismatched noise conditions. Over the last two decades, this class of biometrics has been the subject of considerable research due to its various applications in such areas as telephone banking, remote access control and surveillance. One of the main challenges associated with the deployment of voice biometrics in practice is that of undesired variations in speech characteristics caused by environmental noise. Such variations can in turn lead to a mismatch between the corresponding test and reference material from the same speaker. This is found to adversely affect the performance of speaker recognition in terms of accuracy. To address the above problem, a novel approach is introduced and investigated. The proposed method is based on minimising the noise mismatch between reference speaker models and the given test utterance, and involves a new form of Test-Normalisation (T-Norm) for further enhancing matching scores under the aforementioned adverse operating conditions. Through experimental investigations, based on the two main classes of speaker recognition (i.e. verification/ open-set identification), it is shown that the proposed approach can significantly improve the performance accuracy under mismatched noise conditions. In order to further improve the recognition accuracy in severe mismatch conditions, an approach to enhancing the above stated method is proposed. This, which involves providing a closer adjustment of the reference speaker models to the noise condition in the test utterance, is shown to considerably increase the accuracy in extreme cases of noisy test data. Moreover, to tackle the computational burden associated with the use of the enhanced approach with open-set identification, an efficient algorithm for its realisation in this context is introduced and evaluated. The thesis presents a detailed description of the research undertaken, describes the experimental investigations and provides a thorough analysis of the outcomes

    ROBUST SPEAKER RECOGNITION BASED ON LATENT VARIABLE MODELS

    Get PDF
    Automatic speaker recognition in uncontrolled environments is a very challenging task due to channel distortions, additive noise and reverberation. To address these issues, this thesis studies probabilistic latent variable models of short-term spectral information that leverage large amounts of data to achieve robustness in challenging conditions. Current speaker recognition systems represent an entire speech utterance as a single point in a high-dimensional space. This representation is known as "supervector". This thesis starts by analyzing the properties of this representation. A novel visualization procedure of supervectors is presented by which qualitative insight about the information being captured is obtained. We then propose the use of an overcomplete dictionary to explicitly decompose a supervector into a speaker-specific component and an undesired variability component. An algorithm to learn the dictionary from a large collection of data is discussed and analyzed. A subset of the entries of the dictionary is learned to represent speaker-specific information and another subset to represent distortions. After encoding the supervector as a linear combination of the dictionary entries, the undesired variability is removed by discarding the contribution of the distortion components. This paradigm is closely related to the previously proposed paradigm of Joint Factor Analysis modeling of supervectors. We establish a connection between the two approaches and show how our proposed method provides improvements in terms of computation and recognition accuracy. An alternative way to handle undesired variability in supervector representations is to first project them into a lower dimensional space and then to model them in the reduced subspace. This low-dimensional projection is known as "i-vector". Unfortunately, i-vectors exhibit non-Gaussian behavior, and direct statistical modeling requires the use of heavy-tailed distributions for optimal performance. These approaches lack closed-form solutions, and therefore are hard to analyze. Moreover, they do not scale well to large datasets. Instead of directly modeling i-vectors, we propose to first apply a non-linear transformation and then use a linear-Gaussian model. We present two alternative transformations and show experimentally that the transformed i-vectors can be optimally modeled by a simple linear-Gaussian model (factor analysis). We evaluate our method on a benchmark dataset with a large amount of channel variability and show that the results compare favorably against the competitors. Also, our approach has closed-form solutions and scales gracefully to large datasets. Finally, a multi-classifier architecture trained on a multicondition fashion is proposed to address the problem of speaker recognition in the presence of additive noise. A large number of experiments are conducted to analyze the proposed architecture and to obtain guidelines for optimal performance in noisy environments. Overall, it is shown that multicondition training of multi-classifier architectures not only produces great robustness in the anticipated conditions, but also generalizes well to unseen conditions

    Physiologically-Motivated Feature Extraction Methods for Speaker Recognition

    Get PDF
    Speaker recognition has received a great deal of attention from the speech community, and significant gains in robustness and accuracy have been obtained over the past decade. However, the features used for identification are still primarily representations of overall spectral characteristics, and thus the models are primarily phonetic in nature, differentiating speakers based on overall pronunciation patterns. This creates difficulties in terms of the amount of enrollment data and complexity of the models required to cover the phonetic space, especially in tasks such as identification where enrollment and testing data may not have similar phonetic coverage. This dissertation introduces new features based on vocal source characteristics intended to capture physiological information related to the laryngeal excitation energy of a speaker. These features, including RPCC, GLFCC and TPCC, represent the unique characteristics of speech production not represented in current state-of-the-art speaker identification systems. The proposed features are evaluated through three experimental paradigms including cross-lingual speaker identification, cross song-type avian speaker identification and mono-lingual speaker identification. The experimental results show that the proposed features provide information about speaker characteristics that is significantly different in nature from the phonetically-focused information present in traditional spectral features. The incorporation of the proposed glottal source features offers significant overall improvement to the robustness and accuracy of speaker identification tasks

    Deep learning for i-vector speaker and language recognition

    Get PDF
    Over the last few years, i-vectors have been the state-of-the-art technique in speaker and language recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need speaker or/and phonetic labels for the background data, which are not easily accessible in practice. On the other hand, the lack of speaker-labeled background data makes a big performance gap, in speaker recognition, between two well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector scoring techniques. It has recently been a challenge how to fill this gap without speaker labels, which are expensive in practice. Although some unsupervised clustering techniques are proposed to estimate the speaker labels, they cannot accurately estimate the labels. This thesis tries to solve the problems above by using the DL technology in different ways, without any need of speaker or phonetic labels. In order to fill the performance gap between cosine and PLDA scoring given unlabeled background data, we have proposed an impostor selection algorithm and a universal model adaptation process in a hybrid system based on Deep Belief Networks (DBNs) and Deep Neural Networks (DNNs) to discriminatively model each target speaker. In order to have more insight into the behavior of DL techniques in both single and multi-session speaker enrollment tasks, some experiments have been carried out in both scenarios. Experiments on the National Institute of Standard and Technology (NIST) 2014 i-vector challenge show that 46% of this performance gap, in terms of minDCF, is filled by the proposed DL-based system. Furthermore, the score combination of the proposed DL-based system and PLDA with estimated labels covers 79% of this gap. In the second line of the research, we have developed an efficient alternative vector representation of speech by keeping the computational cost as low as possible and avoiding phonetic labels, which are not always accessible. The proposed vectors will be based on both Gaussian Mixture Models (GMMs) and Restricted Boltzmann Machines (RBMs) and will be referred to as GMM-RBM vectors. The role of RBM is to learn the total speaker and session variability among background GMM supervectors. This RBM, which will be referred to as Universal RBM (URBM), will then be used to transform unseen supervectors to the proposed low dimensional vectors. The use of different activation functions for training the URBM and different transformation functions for extracting the proposed vectors are investigated. At the end, a variant of Rectified Linear Unit (ReLU) which is referred to as Variable ReLU (VReLU) is proposed. Experiments on the core test condition 5 of the NIST Speaker Recognition Evaluation (SRE) 2010 show that comparable results with conventional i-vectors are achieved with a clearly lower computational load in the vector extraction process. Finally, for the Language Identification (LID) application, we have proposed a DNN architecture to model effectively the i-vector space of four languages, English, Spanish, German, and Finnish, in the car environment. Both raw i-vectors and session variability compensated i-vectors are evaluated as input vectors to DNN. The performance of the proposed DNN architecture is compared with both conventional GMM-UBM and i-vector/Linear Discriminant Analysis (LDA) systems considering the effect of duration of signals. It is shown that the signals with duration between 2 and 3 sec meet the accuracy and speed requirements of this application, in which the proposed DNN architecture outperforms GMM-UBM and i-vector/LDA systems by 37% and 28%, respectively.En los últimos años, los i-vectores han sido la técnica de referencia en el reconocimiento de hablantes y de idioma. Los últimos avances en la tecnología de Aprendizaje Profundo (Deep Learning. DL) han mejorado la calidad de los i-vectores, pero las técnicas DL en uso son computacionalmente costosas y necesitan datos etiquetados para cada hablante y/o unidad fon ética, los cuales no son fácilmente accesibles en la práctica. La falta de datos etiquetados provoca una gran diferencia de los resultados en el reconocimiento de hablante con i-vectors entre las dos técnicas de evaluación más utilizados: distancia coseno y Análisis Lineal Discriminante Probabilístico (PLDA). Por el momento, sigue siendo un reto cómo reducir esta brecha sin disponer de las etiquetas de los hablantes, que son costosas de obtener. Aunque se han propuesto algunas técnicas de agrupamiento sin supervisión para estimar las etiquetas de los hablantes, no pueden estimar las etiquetas con precisión. Esta tesis trata de resolver los problemas mencionados usando la tecnología DL de diferentes maneras, sin necesidad de etiquetas de hablante o fon éticas. Con el fin de reducir la diferencia de resultados entre distancia coseno y PLDA a partir de datos no etiquetados, hemos propuesto un algoritmo selección de impostores y la adaptación a un modelo universal en un sistema hibrido basado en Deep Belief Networks (DBN) y Deep Neural Networks (DNN) para modelar a cada hablante objetivo de forma discriminativa. Con el fin de tener más información sobre el comportamiento de las técnicas DL en las tareas de identificación de hablante en una única sesión y en varias sesiones, se han llevado a cabo algunos experimentos en ambos escenarios. Los experimentos utilizando los datos del National Institute of Standard and Technology (NIST) 2014 i-vector Challenge muestran que el 46% de esta diferencia de resultados, en términos de minDCF, se reduce con el sistema propuesto basado en DL. Además, la combinación de evaluaciones del sistema propuesto basado en DL y PLDA con etiquetas estimadas reduce el 79% de esta diferencia. En la segunda línea de la investigación, hemos desarrollado una representación vectorial alternativa eficiente de la voz manteniendo el coste computacional lo más bajo posible y evitando las etiquetas fon éticas, Los vectores propuestos se basan tanto en el Modelo de Mezcla de Gaussianas (GMM) y en las Maquinas Boltzmann Restringidas (RBM), a los que se hacer referencia como vectores GMM-RBM. El papel de la RBM es aprender la variabilidad total del hablante y de la sesión entre los supervectores del GMM gen érico. Este RBM, al que se hará referencia como RBM Universal (URBM), se utilizará para transformar supervectores ocultos en los vectores propuestos, de menor dimensión. Además, se estudia el uso de diferentes funciones de activación para el entrenamiento de la URBM y diferentes funciones de transformación para extraer los vectores propuestos. Finalmente, se propone una variante de la Unidad Lineal Rectificada (ReLU) a la que se hace referencia como Variable ReLU (VReLU). Los experimentos sobre los datos de la condición 5 del test de la NIST Speaker Recognition Evaluation (SRE) 2010 muestran que se han conseguidos resultados comparables con los i-vectores convencionales, con una carga computacional claramente inferior en el proceso de extracción de vectores. Por último, para la aplicación de Identificación de Idioma (LID), hemos propuesto una arquitectura DNN para modelar eficazmente en el entorno del coche el espacio i-vector de cuatro idiomas: inglés, español, alemán y finlandés. Tanto los i-vectores originales como los i-vectores propuestos son evaluados como vectores de entrada a DNN. El rendimiento de la arquitectura DNN propuesta se compara con los sistemas convencionales GMM-UBM y i-vector/Análisis Discriminante Lineal (LDA) considerando el efecto de la duración de las señales. Se muestra que en caso de señales con una duración entre 2 y 3 se obtienen resultados satisfactorios en cuanto a precisión y resultados, superando a los sistemas GMM-UBM y i-vector/LDA en un 37% y 28%, respectivament
    corecore