264 research outputs found

    Joint secure communication and sensing in 6G networks

    Full text link
    Joint communication and sensing is expected to be one of the features introduced by the sixth-generation (6G) wireless systems. This will enable a huge variety of new applications, hence, it is important to find suitable approaches to secure the exchanged information. Conventional security mechanisms may not be able to meet the stringent delay, power, and complexity requirements which opens the challenge of finding new lightweight security solutions. A promising approach coming from the physical layer is the secret key generation (SKG) from channel fading. While SKG has been investigated for several decades, practical implementations of its full protocol are still scarce. The aim of this chapter is to evaluate the SKG rates in real-life setups under a set of different scenarios. We consider a typical radar waveform and present a full implementation of the SKG protocol. Each step is evaluated to demonstrate that generating keys from the physical layer can be a viable solution for future networks. However, we show that there is not a single solution that can be generalized for all cases, instead, parameters should be chosen according to the context

    Fast and Efficient Entropy Coding Architectures for Massive Data Compression

    Get PDF
    The compression of data is fundamental to alleviating the costs of transmitting and storing massive datasets employed in myriad fields of our society. Most compression systems employ an entropy coder in their coding pipeline to remove the redundancy of coded symbols. The entropy-coding stage needs to be efficient, to yield high compression ratios, and fast, to process large amounts of data rapidly. Despite their widespread use, entropy coders are commonly assessed for some particular scenario or coding system. This work provides a general framework to assess and optimize different entropy coders. First, the paper describes three main families of entropy coders, namely those based on variable-to-variable length codes (V2VLC), arithmetic coding (AC), and tabled asymmetric numeral systems (tANS). Then, a low-complexity architecture for the most representative coder(s) of each family is presented-more precisely, a general version of V2VLC, the MQ, M, and a fixed-length version of AC and two different implementations of tANS. These coders are evaluated under different coding conditions in terms of compression efficiency and computational throughput. The results obtained suggest that V2VLC and tANS achieve the highest compression ratios for most coding rates and that the AC coder that uses fixed-length codewords attains the highest throughput. The experimental evaluation discloses the advantages and shortcomings of each entropy-coding scheme, providing insights that may help to select this stage in forthcoming compression systems

    Visual Cortical Traveling Waves: From Spontaneous Spiking Populations to Stimulus-Evoked Models of Short-Term Prediction

    Get PDF
    Thanks to recent advances in neurotechnology, waves of activity sweeping across entire cortical regions are now routinely observed. Moreover, these waves have been found to impact neural responses as well as perception, and the responses themselves are found to be structured as traveling waves. How exactly do these waves arise? Do they confer any computational advantages? These traveling waves represent an opportunity for an expanded theory of neural computation, in which their dynamic local network activity may complement the moment-to-moment variability of our sensory experience. This thesis aims to help uncover the origin and role of traveling waves in the visual cortex through three Works. In Work 1, by simulating a network of conductance-based spiking neurons with realistically large network size and synaptic density, distance-dependent horizontal axonal time delays were found to be important for the widespread emergence of spontaneous traveling waves consistent with those in vivo. Furthermore, these waves were found to be a dynamic mechanism of gain modulation that may explain the in-vivo result of their modulation of perception. In Work 2, the Kuramoto oscillator model was formulated in the complex domain to study a network possessing distance-dependent time delays. Like in Work 1, these delays produced traveling waves, and the eigenspectrum of the complex-valued delayed matrix, containing a delay operator, provided an analytical explanation of them. In Work 3, the model from Work 2 was adapted into a recurrent neural network for the task of forecasting the frames of videos, with the question of how such a biologically constrained model may be useful in visual computation. We found that the wave activity emergent in this network was helpful, as they were tightly linked with high forecast performance, and shuffle controls revealed simultaneous abolishment of both the waves and performance. All together, these works shed light on the possible origins and uses of traveling waves in the visual cortex. In particular, time delays profoundly shape the spatiotemporal dynamics into traveling waves. This was confirmed numerically (Work 1) and analytically (Work 2). In Work 3, these waves were found to aid in the dynamic computation of visual forecasting

    Physical Layer Secret Key Agreement Using One-Bit Quantization and Low-Density Parity-Check Codes

    Full text link
    Physical layer approaches for generating secret encryption keys for wireless systems using channel information have attracted increased interest from researchers in recent years. This paper presents a new approach for calculating log-likelihood ratios (LLRs) for secret key generation that is based on one-bit quantization of channel measurements and the difference between channel estimates at legitimate reciprocal nodes. The studied secret key agreement approach, which implements advantage distillation along with information reconciliation using Slepian-Wolf low-density parity-check (LDPC) codes, is discussed and illustrated with numerical results obtained from simulations. These results show the probability of bit disagreement for keys generated using the proposed LLR calculations compared with alternative LLR calculation methods for key generation based on channel state information. The proposed LLR calculations are shown to be an improvement to the studied approach of physical layer secret key agreement.Comment: Officially Published on ODU Digital Commons at https://digitalcommons.odu.edu/ece_etds/1

    Bridging Hamming Distance Spectrum with Coset Cardinality Spectrum for Overlapped Arithmetic Codes

    Full text link
    Overlapped arithmetic codes, featured by overlapped intervals, are a variant of arithmetic codes that can be used to implement Slepian-Wolf coding. To analyze overlapped arithmetic codes, we have proposed two theoretical tools: Coset Cardinality Spectrum (CCS) and Hamming Distance Spectrum (HDS). The former describes how source space is partitioned into cosets (equally or unequally), and the latter describes how codewords are structured within each coset (densely or sparsely). However, until now, these two tools are almost parallel to each other, and it seems that there is no intersection between them. The main contribution of this paper is bridging HDS with CCS through a rigorous mathematical proof. Specifically, HDS can be quickly and accurately calculated with CCS in some cases. All theoretical analyses are perfectly verified by simulation results

    How to Compress Encrypted Data

    Get PDF
    We study the task of obliviously compressing a vector comprised of nn ciphertexts of size ξ\xi bits each, where at most tt of the corresponding plaintexts are non-zero. This problem commonly features in applications involving encrypted outsourced storages, such as searchable encryption or oblivious message retrieval. We present two new algorithms with provable worst-case guarantees, solving this problem by using only homomorphic additions and multiplications by constants. Both of our new constructions improve upon the state of the art asymptotically and concretely. Our first construction, based on sparse polynomials, is perfectly correct and the first to achieve an asymptotically optimal compression rate by compressing the input vector into O(tξ)\mathcal{O}(t \xi) bits. Compression can be performed homomorphically by performing O(nlogn)\mathcal{O}(n \log n) homomorphic additions and multiplications by constants. The main drawback of this construction is a decoding complexity of Ω(n)\Omega(\sqrt{n}). Our second construction is based on a novel variant of invertible bloom lookup tables and is correct with probability 12κ1-2^{-\kappa}. It has a slightly worse compression rate compared to our first construction as it compresses the input vector into O(ξκt/logt)\mathcal{O}(\xi\kappa t /\log t) bits, where κlogt\kappa \geq \log t. In exchange, both compression and decompression of this construction are highly efficient. The compression complexity is dominated by O(nκ/logt)\mathcal{O}(n \kappa/\log t) homomorphic additions and multiplications by constants. The decompression complexity is dominated by O(κt/logt)\mathcal{O}(\kappa t /\log t) decryption operations and equally many inversions of a pseudorandom permutation

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    A Comprehensive Review of Distributed Coding Algorithms for Visual Sensor Network (VSN)

    Get PDF
    Since the invention of low cost camera, it has been widely incorporated into the sensor node in Wireless Sensor Network (WSN) to form the Visual Sensor Network (VSN). However, the use of camera is bringing with it a set of new challenges, because all the sensor nodes are powered by batteries. Hence, energy consumption is one of the most critical issues that have to be taken into consideration. In addition to this, the use of batteries has also limited the resources (memory, processor) that can be incorporated into the sensor node. The life time of a VSN decreases quickly as the image is transferred to the destination. One of the solutions to the aforementioned problem is to reduce the data to be transferred in the network by using image compression. In this paper, a comprehensive survey and analysis of distributed coding algorithms that can be used to encode images in VSN is provided. This also includes an overview of these algorithms, together with their advantages and deficiencies when implemented in VSN. These algorithms are then compared at the end to determine the algorithm that is more suitable for VSN

    Reconciliation for Satellite-Based Quantum Key Distribution

    Full text link
    This thesis reports on reconciliation schemes based on Low-Density Parity-Check (LDPC) codes in Quantum Key Distribution (QKD) protocols. It particularly focuses on a trade-off between the complexity of such reconciliation schemes and the QKD key growth, a trade-off that is critical to QKD system deployments. A key outcome of the thesis is a design of optimised schemes that maximise the QKD key growth based on finite-size keys for a range of QKD protocols. Beyond this design, the other four main contributions of the thesis are summarised as follows. First, I show that standardised short-length LDPC codes can be used for a special Discrete Variable QKD (DV-QKD) protocol and highlight the trade-off between the secret key throughput and the communication latency in space-based implementations. Second, I compare the decoding time and secret key rate performances between typical LDPC-based rate-adaptive and non-adaptive schemes for different channel conditions and show that the design of Mother codes for the rate-adaptive schemes is critical but remains an open question. Third, I demonstrate a novel design strategy that minimises the probability of the reconciliation process being the bottleneck of the overall DV-QKD system whilst achieving a target QKD rate (in bits per second) with a target ceiling on the failure probability with customised LDPC codes. Fourth, in the context of Continuous Variable QKD (CV-QKD), I construct an in-depth optimisation analysis taking both the security and the reconciliation complexity into account. The outcome of the last contribution leads to a reconciliation scheme delivering the highest secret key rate for a given processor speed which allows for the optimal solution to CV-QKD reconciliation
    corecore