25,641 research outputs found

    Distributed Anonymous Computation of Social Distance

    Get PDF
    This is a paper describing how to compute social distance among participants in a social network, when the social network is stored in a distributed fashion and there is no central point of coordination.In a distributed social network, no single system holds information about all the individuals in the network, and no single system is trusted by all the individuals in the network. It is nonetheless desirable to reliably compute the social distance among individuals. This must be done anonymously, without giving away any identifying information about individuals in the social network, and reliably, without allowing anyone to pretend to be socially closer to someone else than they actually are. The Social Network Connectivity Algorithm, or SoNCA, ac- complishes these goals in a distributed manner. This paper describes both the high-level algorithm and a concrete design that is intended for future use with a network, AllNet, designed to provide secure interpersonal communication utilizing all avail- able means, including Internet, cellular communications, ad-hoc networking and delay-tolerant networking

    Deaf, Dumb, and Chatting Robots, Enabling Distributed Computation and Fault-Tolerance Among Stigmergic Robot

    Get PDF
    We investigate ways for the exchange of information (explicit communication) among deaf and dumb mobile robots scattered in the plane. We introduce the use of movement-signals (analogously to flight signals and bees waggle) as a mean to transfer messages, enabling the use of distributed algorithms among the robots. We propose one-to-one deterministic movement protocols that implement explicit communication. We first present protocols for synchronous robots. We begin with a very simple coding protocol for two robots. Based on on this protocol, we provide one-to-one communication for any system of n \geq 2 robots equipped with observable IDs that agree on a common direction (sense of direction). We then propose two solutions enabling one-to-one communication among anonymous robots. Since the robots are devoid of observable IDs, both protocols build recognition mechanisms using the (weak) capabilities offered to the robots. The first protocol assumes that the robots agree on a common direction and a common handedness (chirality), while the second protocol assumes chirality only. Next, we show how the movements of robots can provide implicit acknowledgments in asynchronous systems. We use this result to design asynchronous one-to-one communication with two robots only. Finally, we combine this solution with the schemes developed in synchronous settings to fit the general case of asynchronous one-to-one communication among any number of robots. Our protocols enable the use of distributing algorithms based on message exchanges among swarms of Stigmergic robots. Furthermore, they provides robots equipped with means of communication to overcome faults of their communication device

    Search Me If You Can: Privacy-preserving Location Query Service

    Full text link
    Location-Based Service (LBS) becomes increasingly popular with the dramatic growth of smartphones and social network services (SNS), and its context-rich functionalities attract considerable users. Many LBS providers use users' location information to offer them convenience and useful functions. However, the LBS could greatly breach personal privacy because location itself contains much information. Hence, preserving location privacy while achieving utility from it is still an challenging question now. This paper tackles this non-trivial challenge by designing a suite of novel fine-grained Privacy-preserving Location Query Protocol (PLQP). Our protocol allows different levels of location query on encrypted location information for different users, and it is efficient enough to be applied in mobile platforms.Comment: 9 pages, 1 figure, 2 tables, IEEE INFOCOM 201

    Distributed Protocols at the Rescue for Trustworthy Online Voting

    Get PDF
    While online services emerge in all areas of life, the voting procedure in many democracies remains paper-based as the security of current online voting technology is highly disputed. We address the issue of trustworthy online voting protocols and recall therefore their security concepts with its trust assumptions. Inspired by the Bitcoin protocol, the prospects of distributed online voting protocols are analysed. No trusted authority is assumed to ensure ballot secrecy. Further, the integrity of the voting is enforced by all voters themselves and without a weakest link, the protocol becomes more robust. We introduce a taxonomy of notions of distribution in online voting protocols that we apply on selected online voting protocols. Accordingly, blockchain-based protocols seem to be promising for online voting due to their similarity with paper-based protocols

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page
    corecore