2,084 research outputs found

    A cell outage management framework for dense heterogeneous networks

    Get PDF
    In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner

    FUZZY BASED SECURITY ALGORITHM FOR WIRELESS SENSOR NETWORKS IN THE INTERNET OF THINGS PARADIGM

    Get PDF
    Published ThesisThe world is embracing the idea of Internet of Things and Industrial Revolution 4.0. However, this acceptance of computerised evolution is met with a myriad of challenges, where consumers of this technology are also growing ever so anxious about the security of their personal data as well as reliability of data collected by the millions and even billions of sensors surrounding them. Wireless sensor networks are the main baseline technology driving Internet of things; by their very inherent nature, these networks are too vulnerable to attacks and yet the network security tools designed for conventional computer networks are not effective in countering these attacks. Wireless sensors have low computational resources, may be highly mobile and in most cases, these networks do not have a central point which can be marked as an authentication point for the sensors, any node can join or leave whenever they want. This leaves the sensors and the internet of things applications depending on them highly susceptible to attacks, which may compromise consumer information and leave security breaches in situation that need absolute security such as homes or even the cars they drive. There are many possibilities of things that could go wrong when hackers gain control of sensors in a car or a house. There have been many solutions offered to address security of Wireless Sensor Networks; however, most of those solutions are often not customised for African context. Given that most African countries have not kept pace with the development of these underlying technologies, blanket adoption of the solutions developed for consumption in the developed world has not yielded optimal results. The focus of this research was the development of an Intrusion Detection System that works in a hierarchical network structured Wireless Sensor Network, where cluster heads oversee groups of nodes and relay their data packets all the way to the sink node. This is a reactive Intrusion Detection System (IDS) that makes use of a fuzzy logic based algorithm for verification of intrusion detections. This system borrows characteristics of traditional Wireless Sensor Networks in that it is hosted external to the nodes; that is, on a computer or server connected to the sink node. The rational for this is the premise that developing the system in this manner optimises the power and processing resource of nodes because no part of the IDS is found in the nodes and they are left to focus purely on sensing. The Intrusion Detection System makes use of remote Over The Air programming to communicate with compromised nodes, to either shut down or reboot and is designed with the ZigBee protocol in mind. Additionally, this Intrusion Detection System is intended to being part of a larger Internet of Things integration framework being proposed at the Central University of Technology. This framework is aimed at developing an Internet of Things adoption strategy customised for African needs and regionally local consumers. To evaluate the effectiveness of the solution, the rate of false detections being picked out by the security algorithm were reduced through the use of fuzzy logic systems; this resulted in an accuracies of above 90 %. The algorithm is also very light when asymptotic notation is applied, making it ideal for Wireless Sensors. Lastly, we also put forward the Xbee version of the Triple Modular Redundancy architecture, customised for Wireless sensor networks in order to beef-up on the security solution presented in this dissertation

    Network anomaly detection research: a survey

    Get PDF
    Data analysis to identifying attacks/anomalies is a crucial task in anomaly detection and network anomaly detection itself is an important issue in network security. Researchers have developed methods and algorithms for the improvement of the anomaly detection system. At the same time, survey papers on anomaly detection researches are available. Nevertheless, this paper attempts to analyze futher and to provide alternative taxonomy on anomaly detection researches focusing on methods, types of anomalies, data repositories, outlier identity and the most used data type. In addition, this paper summarizes information on application network categories of the existing studies

    Cyber-Physical Systems for Smart Water Networks: A Review

    Get PDF
    There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scientific disciplines such as civil, hydraulics, electronics, environment, computer science, optimization, communication, and control theory. For efficient and successful deployment of CPS in SWN, there is a need for a common methodology in terms of design approaches that can involve various scientific disciplines. This paper reviews the state of the art, challenges, and opportunities for CPSs, that could be explored to design the intelligent sensing, communication, and control capabilities of CPS for SWN. In addition, we look at the challenges and solutions in developing a computational framework from the perspectives of machine learning, optimization, and control theory for SWN.acceptedVersio

    Intelligent intrusion detection in low power IoTs

    Get PDF
    • …
    corecore