14,531 research outputs found

    A framework for cooperative engineering

    Get PDF
    This paper discusses a framework for Cooperative Engineering (CE) and itsprototype implementation. Cooperative Engineering concerns the application ofConcurrent Engineering techniques to the design and development of products and oftheir manufacturing systems by a network of companies coming together exclusively forthat purpose. CE is a common practice in many industries such as automotive, aerospace,shipbuilding, defence, and pharmaceutical. This framework provides a formal model forCE. This is done in the context of distributed hybrid systems (DHS), a modelling andcontrol framework for networked systems introduced recently by the control andcomputer science communities

    Distributing Power: A transition to a civic energy future

    Get PDF
    There is growing interest, from a range of stakeholders, in the potential of distributed low-carbon electricity generation in delivering a low-carbon energy system. Yet there are still significant gaps in understanding, particularly regarding the feasibility of scaling up distributed generation from technological, governance, regulation, policy, and financial perspectives. The aim of this report is to address these gaps within the context of the Thousand Flowers pathway

    Product Service Systems and Sustainability: Opportunities for Sustainable Solutions

    Get PDF
    Given that the concept of PSS is beginning to 'catch on' and gain attention, it is time for UNEP to contribute to, and influence the progress of PSS, to ensure that in concept and application it incorporates the idea of sustainability. In this context its potential is not generally understood by the public and private sectors or civil society. This booklet is intended to contribute to the dissemination and the discussion of the PSS concept as a promising approach to sustainability. The ultimate goal must be to achieve Sustainable Product-Service Systems. This UNEP publication is targeted at industry and government, academia and civil society to explain PSS – their potential benefits and limitations – in the sustainability context – using real company examples. To prepare this booklet, UNEP has drawn on the knowledge and experience of PSS experts to flesh out the concept of a sustainable PSS, to collect case studies of PSS in practice, to begin to document both its benefits and the hurdles which need to be overcome in its application, and to suggest ways forward in its development

    Distributing power, a transition to a civic energy future: Report of the Realising Transition Pathways Research Consortium ‘Engine Room’

    Get PDF
    The overarching challenge for UK energy policy is to ensure the delivery of secure, affordable energy in a way that meets the emission reductions targets laid out in the Climate Change Act (2008). The EPSRCfunded Transition Pathways (TP) and, more recently, Realising Transition Pathways (RTP) projects have both argued that multiple logics of governance, ownership, and control of the electricity system can be followed to address the energy trilemma. This work has developed three transition pathways for the UK energy system, each driven by different governance patterns. Each pathway has a specific technological mix, institutional architecture, and societal drivers. These pathways are: Central Co-ordination: Central to this pathway is the role of the nation state in actively delivering the transition. Market Rules: After the creation of a broad policy framework, the state allows competition and private companies to deliver sustainable, affordable energy. Thousand Flowers: This pathway is characterised by a greatly expanded role for civil society in delivering distributed low-carbon generation. The following report focuses on the Thousand Flowers pathway. There is growing interest, from a range of stakeholders, in the potential of distributed low-carbon electricity generation in delivering a low-carbon energy system. Yet there are still significant gaps in understanding, particularly regarding the feasibility of scaling up distributed generation from technological, governance, regulation, policy, and financial perspectives. The aim of this report is to address these gaps within the context of the Thousand Flowers pathway. This research was carried out by the ‘Engine Room’ of the EPSRC-funded Realising Transition Pathways (RTP) consortium. The ‘Engine Room’ was established to facilitate interdisciplinary work across the consortium and consists of research fellows and doctoral researchers from different fields in the nine partner institutions. Engine Room workshops and meetings give researchers the space to present their work and develop and exchange ideas with their peers. This report is an output of a series of interdisciplinary Engine Room workshops held throughout 2013/14 which also drew on contributions from energy industry stakeholders. These workshops brought together the current research and cumulative findings of the Realising Transition Pathways consortium, to examine the consequences of a transition from a centralised energy system to one where distributed generation plays a much greater role (50% of final electricity demand), and is delivered by a civic energy sector. In this report we do not present any panaceas, attempt to preference a civil response to energy transition, or claim technological infallibility. We do, however, explore the potential of a distributed energy future and investigate the technological trajectory it could follow, along with an institutional architecture compatible with its development. We acknowledge throughout that this is a challenging but realistic system transition

    Designing Institutional Infrastructure for E-Science

    Get PDF
    A new generation of information and communication infrastructures, including advanced Internet computing and Grid technologies, promises more direct and shared access to more widely distributed computing resources than was previously possible. Scientific and technological collaboration, consequently, is more and more dependent upon access to, and sharing of digital research data. Thus, the U.S. NSF Directorate committed in 2005 to a major research funding initiative, “Cyberinfrastructure Vision for 21st Century Discovery”. These investments are aimed at enhancement of computer and network technologies, and the training of researchers. Animated by much the same view, the UK e-Science Core Programme has preceded the NSF effort in funding development of an array of open standard middleware platforms, intended to support Grid enabled science and engineering research. This proceeds from the sceptical view that engineering breakthroughs alone will not be enough to achieve the outcomes envisaged. Success in realizing the potential of e-Science—through the collaborative activities supported by the "cyberinfrastructure," if it is to be achieved, will be the result of a nexus of interrelated social, legal, and technical transformations.e-science, cyberinfrastructure, information sharing, research

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    TOWARDS INSTITUTIONAL INFRASTRUCTURES FOR E-SCIENCE: The Scope of the Challenge

    Get PDF
    The three-fold purpose of this Report to the Joint Information Systems Committee (JISC) of the Research Councils (UK) is to: • articulate the nature and significance of the non-technological issues that will bear on the practical effectiveness of the hardware and software infrastructures that are being created to enable collaborations in e- Science; • characterise succinctly the fundamental sources of the organisational and institutional challenges that need to be addressed in regard to defining terms, rights and responsibilities of the collaborating parties, and to illustrate these by reference to the limited experience gained to date in regard to intellectual property, liability, privacy, and security and competition policy issues affecting scientific research organisations; and • propose approaches for arriving at institutional mechanisms whose establishment would generate workable, specific arrangements facilitating collaboration in e-Science; and, that also might serve to meet similar needs in other spheres such as e- Learning, e-Government, e-Commerce, e-Healthcare. In carrying out these tasks, the report examines developments in enhanced computer-mediated telecommunication networks and digital information technologies, and recent advances in technologies of collaboration. It considers the economic and legal aspects of scientific collaboration, with attention to interactions between formal contracting and 'private ordering' arrangements that rest upon research community norms. It offers definitions of e-Science, virtual laboratories, collaboratories, and develops a taxonomy of collaborative e-Science activities which is implemented to classify British e-Science pilot projects and contrast these with US collaboratory projects funded during the 1990s. The approach to facilitating inter-organizational participation in collaborative projects rests upon the development of a modular structure of contractual clauses that permit flexibility and experience-based learning.
    • …
    corecore