333 research outputs found

    Improving Maximum Data Collection Based On Pre-Specified Path Using a Mobile Sink for WSN

    Get PDF
    Data aggregation is one of the challenging issues which are faced in the wireless sensor network by using Energy Harvesting Sensors. Data collection in a fixed pre-defined path with time varying characteristic forms a major problem in Energy Harvesting Sensor Networks. In the proposed work the Adjustment based allocation method is used to allocate fixed time slots to each sensor nodes in which the network throughput can be increased with less energy consumption. The mobile sink transmits the polling message to all the nodes within the transmission range and makes decision based on the profits gained by the sensor nodes in each timeslot. The NP-Hard problem is defined with the form of reducing the complexity of the sensor nodes where larger number of data can be collected from the environment. The data collection throughput is maximized with the use of optimized path for the mobile sink in the network. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Data Collection Method for Mobile Sensor Networks Based on the Theory of Thermal Fields

    Get PDF
    Many sensor applications are aimed for mobile objects, where conventional routing approaches of data delivery might fail. Such applications are habitat monitoring, human probes or vehicular sensing systems. This paper targets such applications and proposes lightweight proactive distributed data collection scheme for Mobile Sensor Networks (MSN) based on the theory of thermal fields. By proper mapping, we create distribution function which allows considering characteristics of a sensor node. We show the functionality of our proposed forwarding method when adapted to the energy of sensor node. We also propose enhancement in order to maximize lifetime of the sensor nodes. We thoroughly evaluate proposed solution and discuss the tradeoffs

    Joint optimization for wireless sensor networks in critical infrastructures

    Get PDF
    Energy optimization represents one of the main goals in wireless sensor network design where a typical sensor node has usually operated by making use of the battery with limited-capacity. In this thesis, the following main problems are addressed: first, the joint optimization of the energy consumption and the delay for conventional wireless sensor networks is presented. Second, the joint optimization of the information quality and energy consumption of the wireless sensor networks based structural health monitoring is outlined. Finally, the multi-objectives optimization of the former problem under several constraints is shown. In the first main problem, the following points are presented: we introduce a joint multi-objective optimization formulation for both energy and delay for most sensor nodes in various applications. Then, we present the Karush-Kuhn-Tucker analysis to demonstrate the optimal solution for each formulation. We introduce a method of determining the knee on the Pareto front curve, which meets the network designer interest for focusing on more practical solutions. The sensor node placement optimization has a significant role in wireless sensor networks, especially in structural health monitoring. In the second main problem of this work, the existing work optimizes the node placement and routing separately (by performing routing after carrying out the node placement). However, this approach does not guarantee the optimality of the overall solution. A joint optimization of sensor placement, routing, and flow assignment is introduced and is solved using mixed-integer programming modelling. In the third main problem of this study, we revisit the placement problem in wireless sensor networks of structural health monitoring by using multi-objective optimization. Furthermore, we take into consideration more constraints that were not taken into account before. This includes the maximum capacity per link and the node-disjoint routing. Since maximum capacity constraint is essential to study the data delivery over limited-capacity wireless links, node-disjoint routing is necessary to achieve load balancing and longer wireless sensor networks lifetime. We list the results of the previous problems, and then we evaluate the corresponding results

    Power Optimization for Wireless Sensor Networks

    Get PDF

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces
    corecore