4,679 research outputs found

    Estimator-based adaptive neural network control of leader-follower high-order nonlinear multiagent systems with actuator faults

    Get PDF
    The problem of distributed cooperative control for networked multiagent systems is investigated in this paper. Each agent is modeled as an uncertain nonlinear high-order system incorporating with model uncertainty, unknown external disturbance, and actuator fault. The communication network between followers can be an undirected or a directed graph, and only some of the follower agents can obtain the commands from the leader. To develop the distributed cooperative control algorithm, a prefilter is designed, which can derive the state-space representation to a newly constructed plant. Then, a set of distributed adaptive neural network controllers are designed by making certain modifications on traditional backstepping techniques with the aid of adaptive control, neural network control, and a second-order sliding mode estimator. Rigorous proving procedures are provided,which show that uniform ultimate boundedness of all the tracking errors can be achieved in a networked multiagent system. Finally, a numerical simulation is carried out to evaluate the theoretical results

    Bounded Distributed Flocking Control of Nonholonomic Mobile Robots

    Full text link
    There have been numerous studies on the problem of flocking control for multiagent systems whose simplified models are presented in terms of point-mass elements. Meanwhile, full dynamic models pose some challenging problems in addressing the flocking control problem of mobile robots due to their nonholonomic dynamic properties. Taking practical constraints into consideration, we propose a novel approach to distributed flocking control of nonholonomic mobile robots by bounded feedback. The flocking control objectives consist of velocity consensus, collision avoidance, and cohesion maintenance among mobile robots. A flocking control protocol which is based on the information of neighbor mobile robots is constructed. The theoretical analysis is conducted with the help of a Lyapunov-like function and graph theory. Simulation results are shown to demonstrate the efficacy of the proposed distributed flocking control scheme

    Task space consensus in networks of heterogeneous and uncertain robotic systems with variable time-delays

    Get PDF
    This work deals with the leader-follower and the leaderless consensus problems in networks of multiple robot manipulators. The robots are non-identical, kinematically different (heterogeneous), and their physical parameters are uncertain. The main contribution of this work is a novel controller that solves the two consensus problems, in the task space, with the following features: it estimates the kinematic and the dynamic physical parameters; it is robust to interconnecting variable-time delays; it employs the singularity-free unit-quaternions to represent the orientation; and, using energy-like functions, the controller synthesis follows a constructive procedure. Simulations using a network with four heterogeneous manipulators illustrate the performance of the proposed controller.Peer ReviewedPostprint (author's final draft

    Adaptive sliding mode observation in a network of dynamical systems

    Get PDF
    This paper considers the problem of reconstructing state information in all the nodes of a complex network of dynamical systems. The individual nodes comprise a known linear part and unknown but bounded uncertainties in certain channels of the system. A supervisory adaptive sliding mode observer conïŹguration is proposed for estimating the states. A linear matrix inequality (LMI) approach is suggested to synthesise the gains of the sliding mode observer. Although deployed centrally to estimate all the states of the complex network, the design process depends only on the dynamics of an individual node of the network. The methodology is demonstrated by considering a network of Chua oscillators
    • 

    corecore