1,279 research outputs found

    The roles of artificial intelligence and knowledge management in emergency telecommunications

    Get PDF
    Over the past decade, the international community has recognized the substantive role modern telecommunications can play in disaster relief operations and humanitarian actions.The Tampere Convention on “Emergency Telecommunications” was an initiative to facilitate these activities, endorsed by various international conferences.The role of artificial intelligence and knowledge management in emergency telecommunications could be tremendous, with applications potentially ranging from network and workflow management to training and decision support.In the future, a greater convergence among different technologies, artificial intelligence and knowledge management included, in the service of emergency telecommunications could be foreseen, thus achieving the noble goal of utilizing modern information and communications technologies for disaster mitigation

    A review of the internet of floods : near real-time detection of a flood event and its impact

    Get PDF
    Worldwide, flood events frequently have a dramatic impact on urban societies. Time is key during a flood event in order to evacuate vulnerable people at risk, minimize the socio-economic, ecologic and cultural impact of the event and restore a society from this hazard as quickly as possible. Therefore, detecting a flood in near real-time and assessing the risks relating to these flood events on the fly is of great importance. Therefore, there is a need to search for the optimal way to collect data in order to detect floods in real time. Internet of Things (IoT) is the ideal method to bring together data of sensing equipment or identifying tools with networking and processing capabilities, allow them to communicate with one another and with other devices and services over the Internet to accomplish the detection of floods in near real-time. The main objective of this paper is to report on the current state of research on the IoT in the domain of flood detection. Current trends in IoT are identified, and academic literature is examined. The integration of IoT would greatly enhance disaster management and, therefore, will be of greater importance into the future

    Institute for the Protection and Security of the Citizen Activity Report 2002.

    Get PDF
    Abstract not availableJRC.G-Institute for the Protection and the Security of the Citizen (Ispra

    Technology Resources for Earthquake Monitoring and Response (TREMOR)

    Get PDF
    Earthquakes represent a major hazard for populations around the world, causing frequent loss of life, human suffering, and enormous damage to homes, other buildings, and infrastructure. The Technology Resources for Earthquake Monitoring and Response (TREMOR) proposal is designed to address this problem. This proposal recommends two prototype systems integrating space-based and ground technology. The suggested pilot implementation is over a 10-year period in three focus countries – China, Japan, and Peru – that are among the areas in the world most afflicted by earthquakes. The first proposed system is an Earthquake Early Warning Prototype System that addresses the potential of earthquake precursors, the science of which is incomplete and considered controversial within the scientific community. We recommend the development and launch of two small satellites to study ionospheric and electromagnetic precursors. In combination with ground-based precursor research, the data gathered will improve existing knowledge of earthquake-related phenomena. The second proposed system is an Earthquake Simulation and Response Prototype. An earthquake simulator will combine any available precursor data with detailed knowledge of the affected areas using a Geographic Information System (GIS) to identify those areas that are most likely to experience the greatest level of damage. Mobile satellite communication hubs will provide telephone and data links between response teams, while satellite navigation systems will locate and track emergency vehicles. We recommend a virtual response satellite constellation composed of existing and future high resolution satellites. We also recommend education and training for response teams on the use of these technologies. The two prototypes will be developed and implemented by a proposed non-profit nongovernmental organization (NGO) called the TREMOR Foundation, which will obtain funding from government disaster management agencies and NGOs. A for-profit subsidiary will market any spin-off technologies and provide an additional source of funding. Assuming positive results from the prototype systems, Team TREMOR recommends their eventual and permanent implementation in all countries affected by earthquakes.Postprint (published version

    The Contribution Of Radio Sciences to Disaster Management

    Get PDF
    Available: http://www.isprs.org/proceedings/2011/Gi4DM/CDDATA/sessions.htmlInternational audienceWhen a natural disaster occurs, the fast and effective organization of emergency assistance assumes the rapid provision of reliable information concerning the state of the infrastructure; the creation, in almost real-time, of a response chain and the reconfiguration of telecommunications systems. This article proposes a chain which incorporates algorithms from recent research, with particular focus on communication systems and reconfiguration techniques. The problems of image reliability and the effects created by ionospheric propagation and turbulent surfaces are discussed

    Developing a Fly-Away-Kit (FLAK) to support Hastily Formed Networks (HFN) for Humanitarian Assistance and Disaster Relief)

    Get PDF
    This research discusses developing a FLy-Away-Kit (FLAK) to support the forming of Hastily Formed Networks (HFNs) in remote areas in support of Humanitarian Assistance and Disaster Relief (HA/DR) operations. The initial focus will be on the requirements, situation, area of operations and mission. Different definitions and perspectives emerge when an individual mentions HFNs, HA/DR and Complex Humanitarian Disasters (CHDs). It is the author's intention to define and describe both a HFN and a CHD, in order to justify the need for the FLAK. This process will also define the requirements for the FLAK as well as facilitate processes for ensuring those requirements are met. The personnel responding to the attacks of September 11, 2001 and the December 26, 2004 Southeast Asia Tsunami suffered Command and Control (C2) and information challenges. Even more challenges are being currently addressed by Homeland Defense, Maritime Domain Awareness, and Non-Governmental Organizations (NGOs) abroad. From the top down, levels of administration are developing new plans, procedures, and organizations that will improve the security and communication processes of our nation. A global, broadband, rapidly deployable network node complete with Internet reachback, voice, data, and video capability is of the utmost importance to enable C2 and Network Centric Operations (NCO). Undoubtedly, commercial and military organizations, traditional or new, will greatly benefit from this capability. The U.S. DoD is particularly interested in improving interaction, coordination, communications, and operations when DoD and other entities respond simultaneously to natural or man-made CHD's.http://archive.org/details/developingflyawa109451941Approved for public release; distribution is unlimited

    Integrated ZigBee RFID sensor networks for resource tracking and monitoring in logistics management

    Get PDF
    The Radio Frequency Identification (RFID), which includes passive and active systems and is the hottest Auto-ID technology nowadays, and the wireless sensor network (WSN), which is one of the focusing topics on monitoring and control, are two fast-growing technologies that have shown great potential in future logistics management applications. However, an information system for logistics applications is always expected to answer four questions: Who, What, When and Where (4Ws), and neither of the two technologies is able to provide complete information for all of them. WSN aims to provide environment monitoring and control regarded as When and What , while RFID focuses on automatic identification of various objects and provides Who (ID). Most people usually think RFID can provide Where at all the time. But what normal passive RFID does is to tell us where an object was the last time it went through a reader, and normal active RFID only tells whether an object is presenting on site. This could sometimes be insufficient for certain applications that require more accurate location awareness, for which a system with real-time localization (RTLS), which is an extended concept of RFID, will be necessary to answer Where constantly. As WSN and various RFID technologies provide information for different but complementary parts of the 4Ws, a hybrid system that gives a complete answer by combining all of them could be promising in future logistics management applications. Unfortunately, in the last decade those technologies have been emerging and developing independently, with little research been done in how they could be integrated. This thesis aims to develop a framework for the network level architecture design of such hybrid system for on-site resource management applications in logistics centres. The various architectures proposed in this thesis are designed to address different levels of requirements in the hierarchy of needs, from single integration to hybrid system with real-time localization. The contribution of this thesis consists of six parts. Firstly, two new concepts, Reader as a sensor and Tag as a sensor , which lead to RAS and TAS architectures respectively, for single integrations of RFID and WSN in various scenarios with existing systems; Secondly, a integrated ZigBee RFID Sensor Network Architecture for hybrid integration; Thirdly, a connectionless inventory tracking architecture (CITA) and its battery consumption model adding location awareness for inventory tracking in Hybrid ZigBee RFID Sensor Networks; Fourthly, a connectionless stochastic reference beacon architecture (COSBA) adding location awareness for high mobility target tracking in Hybrid ZigBee RFID Sensor Networks; Fifthly, improving connectionless stochastic beacon transmission performance with two proposed beacon transmission models, the Fully Stochastic Reference Beacon (FSRB) model and the Time Slot Based Stochastic Reference Beacon (TSSRB) model; Sixthly, case study of the proposed frameworks in Humanitarian Logistics Centres (HLCs). The research in this thesis is based on ZigBee/IEEE802.15.4, which is currently the most widely used WSN technology. The proposed architectures are demonstrated through hardware implementation and lab tests, as well as mathematic derivation and Matlab simulations for their corresponding performance models. All the tests and simulations of my designs have verified feasibility and features of our designs compared with the traditional systems

    Environmental monitoring: landslide assessment and risk management (Test site: Vernazza, Cinque Terre Natural Park)

    Get PDF
    Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or having geological nature such as earthquakes, volcanoes and landslide, are well known for their devastating impacts on human life, economy and environment. Over recent decades, the people and the societies are becoming more vulnerable; although the frequency of natural events may be constant, human activities contribute to their increased intensity. Indeed, every year millions of people are affected by natural disasters globally and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. The PhD work is part of the activities for the support and development of methodologies useful to improve the management of environmental emergencies. In particular, it focused on the analysis of environmental monitoring and disaster risk management, a systematic approach to identify, to assess and to reduce the potential risks produced by a disaster. This method (Disaster Risk Management) aims to reduce socio-economic vulnerabilities and deals with natural and man-made events. In the PhD thesis, in particular, the slope movements have been evaluated. Slope failures are generally not so costly as earthquakes or major floods, but they are more widespread, and over the years may cause more property loss than any other geological hazard. In many developing regions slope failures constitute a continuing and serious impact on the social and economic structure. Specifically, the Italian territory has always been subject to instability phenomena, because of the geological and morphological characteristic and because of "extreme" weather events that are repeated more frequently than in the past, in relation to climate change. Currently these disasters lead to the largest number of victims and damages to settlements, infrastructure and historical and cultural environmental, after the earthquakes. The urban development, especially in recent decades, resulted in an increase of the assets at risk and unstable areas, often due to constant human intervention badly designed that led to instability also places previously considered "safe". Prevention is therefore essential to minimize the damages caused by landslides The objectives of the conducted research were to investigate the different techniques and to check their potentiality, in order to evaluate the most appropriate instrument for landslide hazard assessment in terms of better compromise between time to perform the analysis and expected results. The attempt is to evaluate which are the best methodologies to use according to the scenario, taking into consideration both reachable accuracies and time constraints. Careful considerations will be performed on strengths, weaknesses and limitations inherent to each methodology. The characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. This is an important factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. The test site was the municipality of Vernazza, which in October 2011 was subject to a extreme rainfall which led to the occurrence of a series of landslides along the Vernazzola stream, which have emphasized the flood event that affected the water cours

    Business Sector

    Get PDF
    This study assessed eight business companies based in Metro Manila and Bulacan regarding their participation to Yolanda disaster relief and rehabilitation efforts. Specifically, it described the selected companies based on their current Corporate Social Responsibility (CSR) programs and their interventions in response to Yolanda disaster relief and rehabilitation. Data and information were gathered and analyzed using qualitative techniques. Results showed that more than half of the companies fell under the international business company category. All companies were considered large in terms of scale of capital and operation. Five of the companies have their own corporate foundation while two companies have a concrete program on disaster. All participated during the Yolanda disaster relief and rehabilitation initiatives, through direct or indirect support mechanisms

    Economically sustainable public security and emergency network exploiting a broadband communications satellite

    Get PDF
    The research contributes to work in Rapid Deployment of a National Public Security and Emergency Communications Network using Communication Satellite Broadband. Although studies in Public Security Communication networks have examined the use of communications satellite as an integral part of the Communication Infrastructure, there has not been an in-depth design analysis of an optimized regional broadband-based communication satellite in relation to the envisaged service coverage area, with little or no terrestrial last-mile telecommunications infrastructure for delivery of satellite solutions, applications and services. As such, the research provides a case study of a Nigerian Public Safety Security Communications Pilot project deployed in regions of the African continent with inadequate terrestrial last mile infrastructure and thus requiring a robust regional Communications Satellite complemented with variants of terrestrial wireless technologies to bridge the digital hiatus as a short and medium term measure apart from other strategic needs. The research not only addresses the pivotal role of a secured integrated communications Public safety network for security agencies and emergency service organizations with its potential to foster efficient information symmetry amongst their operations including during emergency and crisis management in a timely manner but demonstrates a working model of how analogue spectrum meant for Push-to-Talk (PTT) services can be re-farmed and digitalized as a “dedicated” broadband-based public communications system. The network’s sustainability can be secured by using excess capacity for the strategic commercial telecommunication needs of the state and its citizens. Utilization of scarce spectrum has been deployed for Nigeria’s Cashless policy pilot project for financial and digital inclusion. This effectively drives the universal access goals, without exclusivity, in a continent, which still remains the least wired in the world
    corecore