4,507 research outputs found

    From Big Data to Big Displays: High-Performance Visualization at Blue Brain

    Full text link
    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.Comment: ISC 2017 Visualization at Scale worksho

    Using high resolution displays for high resolution cardiac data

    Get PDF
    The ability to perform fast, accurate, high resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to rendering and visualization must evolve. In this paper we address the interactive display of data from high resolution MRI scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled LCD panel display wall and associated software which provide an interactive and intuitive user interface. The oView software is an OpenGL application which is written for the VRJuggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at both Leeds and Oxford Universities. We discuss important factors to be considered for interactive 2D display of large 3D datasets, including the use of intuitive input devices and level of detail aspects

    Scalable Real-Time Rendering for Extremely Complex 3D Environments Using Multiple GPUs

    Get PDF
    In 3D visualization, real-time rendering of high-quality meshes in complex 3D environments is still one of the major challenges in computer graphics. New data acquisition techniques like 3D modeling and scanning have drastically increased the requirement for more complex models and the demand for higher display resolutions in recent years. Most of the existing acceleration techniques using a single GPU for rendering suffer from the limited GPU memory budget, the time-consuming sequential executions, and the finite display resolution. Recently, people have started building commodity workstations with multiple GPUs and multiple displays. As a result, more GPU memory is available across a distributed cluster of GPUs, more computational power is provided throughout the combination of multiple GPUs, and a higher display resolution can be achieved by connecting each GPU to a display monitor (resulting in a tiled large display configuration). However, using a multi-GPU workstation may not always give the desired rendering performance due to the imbalanced rendering workloads among GPUs and overheads caused by inter-GPU communication. In this dissertation, I contribute a multi-GPU multi-display parallel rendering approach for complex 3D environments. The approach has the capability to support a high-performance and high-quality rendering of static and dynamic 3D environments. A novel parallel load balancing algorithm is developed based on a screen partitioning strategy to dynamically balance the number of vertices and triangles rendered by each GPU. The overhead of inter-GPU communication is minimized by transferring only a small amount of image pixels rather than chunks of 3D primitives with a novel frame exchanging algorithm. The state-of-the-art parallel mesh simplification and GPU out-of-core techniques are integrated into the multi-GPU multi-display system to accelerate the rendering process

    DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool

    Get PDF
    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Techniques and algorithms for immersive and interactive visualization of large datasets

    Get PDF
    Advances in computing power have made it possible for scientists to perform atomistic simulations of material systems that range in size, from a few hundred thousand atoms to one billion atoms. An immersive and interactive walkthrough of such datasets is an ideal method for exploring and understanding the complex material processes in these simulations. However rendering such large datasets at interactive frame rates is a major challenge. A scalable visualization platform is developed that is scalable and allows interactive exploration in an immersive, virtual environment. The system uses an octree based data management system that forms the core of the application. This reduces the amount of data sent to the pipeline without a per-atom analysis. Secondary algorithms and techniques such as modified occlusion culling, multiresolution rendering and distributed computing are employed to further speed up the rendering process. The resulting system is highly scalable and is capable of visualizing large molecular systems at interactive frame rates on dual processor SGI Onyx2 with an InfinteReality2 graphics pipeline
    corecore