423 research outputs found

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Artificial Intelligence Empowered UAVs Data Offloading in Mobile Edge Computing

    Get PDF
    The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs\u27 data to be offloaded to the selected MEC servers, while the existence of at least one Nash Equilibrium (NE) is proven exploiting the power of submodular games. A best response dynamics framework and two alternative reinforcement learning algorithms are introduced that converge to a NE, and their trade-offs are discussed. The overall framework performance evaluation is achieved via modeling and simulation, in terms of its efficiency and effectiveness, under different operation approaches and scenarios

    Gestion conjointe de ressources de communication et de calcul pour les réseaux sans fils à base de cloud

    Get PDF
    Mobile Edge Cloud brings the cloud closer to mobile users by moving the cloud computational efforts from the internet to the mobile edge. We adopt a local mobile edge cloud computing architecture, where small cells are empowered with computational and storage capacities. Mobile users’ offloaded computational tasks are executed at the cloud-enabled small cells. We propose the concept of small cells clustering for mobile edge computing, where small cells cooperate in order to execute offloaded computational tasks. A first contribution of this thesis is the design of a multi-parameter computation offloading decision algorithm, SM-POD. The proposed algorithm consists of a series of low complexity successive and nested classifications of computational tasks at the mobile side, leading to local computation, or offloading to the cloud. To reach the offloading decision, SM-POD jointly considers computational tasks, handsets, and communication channel parameters. In the second part of this thesis, we tackle the problem of small cell clusters set up for mobile edge cloud computing for both single-user and multi-user cases. The clustering problem is formulated as an optimization that jointly optimizes the computational and communication resource allocation, and the computational load distribution on the small cells participating in the computation cluster. We propose a cluster sparsification strategy, where we trade cluster latency for higher system energy efficiency. In the multi-user case, the optimization problem is not convex. In order to compute a clustering solution, we propose a convex reformulation of the problem, and we prove that both problems are equivalent. With the goal of finding a lower complexity clustering solution, we propose two heuristic small cells clustering algorithms. The first algorithm is based on resource allocation on the serving small cells where tasks are received, as a first step. Then, in a second step, unserved tasks are sent to a small cell managing unit (SCM) that sets up computational clusters for the execution of these tasks. The main idea of this algorithm is task scheduling at both serving small cells, and SCM sides for higher resource allocation efficiency. The second proposed heuristic is an iterative approach in which serving small cells compute their desired clusters, without considering the presence of other users, and send their cluster parameters to the SCM. SCM then checks for excess of resource allocation at any of the network small cells. SCM reports any load excess to serving small cells that re-distribute this load on less loaded small cells. In the final part of this thesis, we propose the concept of computation caching for edge cloud computing. With the aim of reducing the edge cloud computing latency and energy consumption, we propose caching popular computational tasks for preventing their re-execution. Our contribution here is two-fold: first, we propose a caching algorithm that is based on requests popularity, computation size, required computational capacity, and small cells connectivity. This algorithm identifies requests that, if cached and downloaded instead of being re-computed, will increase the computation caching energy and latency savings. Second, we propose a method for setting up a search small cells cluster for finding a cached copy of the requests computation. The clustering policy exploits the relationship between tasks popularity and their probability of being cached, in order to identify possible locations of the cached copy. The proposed method reduces the search cluster size while guaranteeing a minimum cache hit probability.Cette thèse porte sur le paradigme « Mobile Edge cloud» qui rapproche le cloud des utilisateurs mobiles et qui déploie une architecture de clouds locaux dans les terminaisons du réseau. Les utilisateurs mobiles peuvent désormais décharger leurs tâches de calcul pour qu’elles soient exécutées par les femto-cellules (FCs) dotées de capacités de calcul et de stockage. Nous proposons ainsi un concept de regroupement de FCs dans des clusters de calculs qui participeront aux calculs des tâches déchargées. A cet effet, nous proposons, dans un premier temps, un algorithme de décision de déportation de tâches vers le cloud, nommé SM-POD. Cet algorithme prend en compte les caractéristiques des tâches de calculs, des ressources de l’équipement mobile, et de la qualité des liens de transmission. SM-POD consiste en une série de classifications successives aboutissant à une décision de calcul local, ou de déportation de l’exécution dans le cloud.Dans un deuxième temps, nous abordons le problème de formation de clusters de calcul à mono-utilisateur et à utilisateurs multiples. Nous formulons le problème d’optimisation relatif qui considère l’allocation conjointe des ressources de calculs et de communication, et la distribution de la charge de calcul sur les FCs participant au cluster. Nous proposons également une stratégie d’éparpillement, dans laquelle l’efficacité énergétique du système est améliorée au prix de la latence de calcul. Dans le cas d’utilisateurs multiples, le problème d’optimisation d’allocation conjointe de ressources n’est pas convexe. Afin de le résoudre, nous proposons une reformulation convexe du problème équivalente à la première puis nous proposons deux algorithmes heuristiques dans le but d’avoir un algorithme de formation de cluster à complexité réduite. L’idée principale du premier est l’ordonnancement des tâches de calculs sur les FCs qui les reçoivent. Les ressources de calculs sont ainsi allouées localement au niveau de la FC. Les tâches ne pouvant pas être exécutées sont, quant à elles, envoyées à une unité de contrôle (SCM) responsable de la formation des clusters de calculs et de leur exécution. Le second algorithme proposé est itératif et consiste en une formation de cluster au niveau des FCs ne tenant pas compte de la présence d’autres demandes de calculs dans le réseau. Les propositions de cluster sont envoyées au SCM qui évalue la distribution des charges sur les différentes FCs. Le SCM signale tout abus de charges pour que les FCs redistribuent leur excès dans des cellules moins chargées.Dans la dernière partie de la thèse, nous proposons un nouveau concept de mise en cache des calculs dans l’Edge cloud. Afin de réduire la latence et la consommation énergétique des clusters de calculs, nous proposons la mise en cache de calculs populaires pour empêcher leur réexécution. Ici, notre contribution est double : d’abord, nous proposons un algorithme de mise en cache basé, non seulement sur la popularité des tâches de calculs, mais aussi sur les tailles et les capacités de calculs demandés, et la connectivité des FCs dans le réseau. L’algorithme proposé identifie les tâches aboutissant à des économies d’énergie et de temps plus importantes lorsqu’elles sont téléchargées d’un cache au lieu d’être recalculées. Nous proposons ensuite d’exploiter la relation entre la popularité des tâches et la probabilité de leur mise en cache, pour localiser les emplacements potentiels de leurs copies. La méthode proposée est basée sur ces emplacements, et permet de former des clusters de recherche de taille réduite tout en garantissant de retrouver une copie en cache

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Learning, Computing, and Trustworthiness in Intelligent IoT Environments: Performance-Energy Tradeoffs

    Get PDF
    An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications, examples of which include highly automated manufacturing cells or autonomously interacting harvesting machines. Energy efficiency is key in such edge environments, since they are often based on an infrastructure that consists of wireless and battery-run devices, e.g., e-tractors, drones, Automated Guided Vehicle (AGV)s and robots. The total energy consumption draws contributions from multipleiIoTe technologies that enable edge computing and communication, distributed learning, as well as distributed ledgers and smart contracts. This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption. Finally, the paper provides a vision for integrating these enabling technologies in energy-efficient iIoTe and a roadmap to address the open research challengesComment: Accepted for publication in IEEE Transactions on Green Communication and Networkin

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors
    • …
    corecore