938 research outputs found

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Local Government Policy and Planning for Unmanned Aerial Systems

    Get PDF
    This research identifies key state and local government stakeholders in California for drone policy creation and implementation, and describes their perceptions and understanding of drone policy. The investigation assessed stakeholders’ positions, interests, and influence on issues, with the goal of providing potential policy input to achieve successful drone integration in urban environments and within the national airspace of the United States. The research examined regulatory priorities through the use of a two-tiered Stakeholder Analysis Process. The first tier consisted of a detailed survey sent out to over 450 local agencies and jurisdictions in California. The second tier consisted of an in-person focus group to discuss survey results as well as to gain deeper insights into local policymakers’ current concerns. Results from the two tiers of analysis, as well as recommendations, are provided here

    Enhancing Trajectory-Based Operations for UAVs through Hexagonal Grid Indexing: A Step towards 4D Integration of UTM and ATM

    Get PDF
    Aviation is expected to face a surge in the number of manned aircraft and drones in the coming years, making it necessary to integrate Unmanned Aircraft System Traffic Management (UTM) into Air Traffic Management (ATM) to ensure safe and efficient operations. This research proposes a novel hexagonal grid-based 4D trajectory representation framework for unmanned aerial vehicle (UAV) traffic management that overcomes the limitations of existing square/cubic trajectory representation methods. The proposed model employs a hierarchical indexing structure using hexagonal cells, enabling efficient ground based strategic conflict detection and conflict free 4D trajectory planning. Additionally, the use of Hexagonal Discrete Global Grid Systems provides a more accurate representation of UAV trajectories, improved sampling efficiency and higher angular resolution. The proposed approach can be used for predeparture conflict free 4D trajectory planning, reducing computational complexity and memory requirements while improving the accuracy of strategic trajectory conflict detection. The proposed framework can also be extended for air traffic flow management trajectory planning, Air Traffic Control (ATC) workload measurement, sector capacity estimation, dynamics airspace sectorization using hexagonal sectors and traffic density calculation, contributing to the development of an efficient UTM system, and facilitating the integration of UAVs into the national airspace system with AT

    A Multi-Temporal Object-Based Image Analysis to Detect Long-Lived Shrub Cover Changes in Drylands

    Get PDF
    Climate change and human actions condition the spatial distribution and structure of vegetation, especially in drylands. In this context, object-based image analysis (OBIA) has been used to monitor changes in vegetation, but only a few studies have related them to anthropic pressure. In this study, we assessed changes in cover, number, and shape of Ziziphus lotus shrub individuals in a coastal groundwater-dependent ecosystem in SE Spain over a period of 60 years and related them to human actions in the area. In particular, we evaluated how sand mining, groundwater extraction, and the protection of the area affect shrubs. To do this, we developed an object-based methodology that allowed us to create accurate maps (overall accuracy up to 98%) of the vegetation patches and compare the cover changes in the individuals identified in them. These changes in shrub size and shape were related to soil loss, seawater intrusion, and legal protection of the area measured by average minimum distance (AMD) and average random distance (ARD) analysis. It was found that both sand mining and seawater intrusion had a negative effect on individuals; on the contrary, the protection of the area had a positive effect on the size of the individuals’ coverage. Our findings support the use of OBIA as a successful methodology for monitoring scattered vegetation patches in drylands, key to any monitoring program aimed at vegetation preservation

    Invariant EKF Design for Scan Matching-aided Localization

    Full text link
    Localization in indoor environments is a technique which estimates the robot's pose by fusing data from onboard motion sensors with readings of the environment, in our case obtained by scan matching point clouds captured by a low-cost Kinect depth camera. We develop both an Invariant Extended Kalman Filter (IEKF)-based and a Multiplicative Extended Kalman Filter (MEKF)-based solution to this problem. The two designs are successfully validated in experiments and demonstrate the advantage of the IEKF design

    Field Tests with an Aerial-Ground Convoy System for Collaborative Tasks

    Get PDF
    This chapter presents the design, implementation and field experiments of a convoy between an aerial and a terrestrial robot. The convoy strategy proposed is indeed very simple and based in a PD control law. We introduce the robots Pinky and Gaia, robots which have been part of the FRACTAL fleet, the general system set up is also addressed, such as the ground station workloads and the middleware architecture. Finally, comprehensive experimental results shown herein, demonstrate the good performance and usability of the system in multi-robot behavioral research

    Three decades of volume change of a small greenlandic glacier using ground penetrating radar, structure from motion, and aerial photogrammetry

    Get PDF
    Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km2) on Greenland's west coast. A photogrammetrically derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 106 m3 of ice, corresponding to roughly a quarter of its 1985 volume (148.6 ± 47.6 106 m3) and a thinning rate of 0.60 ± 0.11 m a-1. The computations are challenged by a relatively large fraction of the 1985 DEM (∼50% of the glacier surface) being deemed unreliable owing to low contrast (snow cover) in the 1985 aerial photography. To address this issue, surface elevation in low contrast areas was measured manually at point locations and interpolated using a universal kriging approach. We conclude that ground-based SfM is well suited to establish high-quality DEMs of smaller glaciers. Provided favorable topography, the approach constitutes a viable alternative where the use of drones is not possible. Our investigations constitute the first glacier on Greenland's west coast where ice volume was determined and volume change calculated. The glacier's thinning rate is comparable to, for example, the Swiss Alps and underlines that arctic glaciers are subject to fast changes

    Autonomous aerial robot for high-speed search and intercept applications

    Get PDF
    In recent years, high-speed navigation and environment interaction in the context of aerial robotics has become a field of interest for several academic and industrial research studies. In particular, Search and Intercept (SaI) applications for aerial robots pose a compelling research area due to their potential usability in several environments. Nevertheless, SaI tasks involve a challenging development regarding sensory weight, onboard computation resources, actuation design, and algorithms for perception and control, among others. In this work, a fully autonomous aerial robot for high-speed object grasping has been proposed. As an additional subtask, our system is able to autonomously pierce balloons located in poles close to the surface. Our first contribution is the design of the aerial robot at an actuation and sensory level consisting of a novel gripper design with additional sensors enabling the robot to grasp objects at high speeds. The second contribution is a complete software framework consisting of perception, state estimation, motion planning, motion control, and mission control in order to rapidly and robustly perform the autonomous grasping mission. Our approach has been validated in a challenging international competition and has shown outstanding results, being able to autonomously search, follow, and grasp a moving object at 6 m/s in an outdoor environment.Agencia Estatal de InvestigaciónKhalifa Universit
    corecore