3,383 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Self-stabilizing cluster routing in Manet using link-cluster architecture

    Full text link
    We design a self-stabilizing cluster routing algorithm based on the link-cluster architecture of wireless ad hoc networks. The network is divided into clusters. Each cluster has a single special node, called a clusterhead that contains the routing information about inter and intra-cluster communication. A cluster is comprised of all nodes that choose the corresponding clusterhead as their leader. The algorithm consists of two main tasks. First, the set of special nodes (clusterheads) is elected such that it models the link-cluster architecture: any node belongs to a single cluster, it is within two hops of the clusterhead, it knows the direct neighbor on the shortest path towards the clusterhead, and there exist no two adjacent clusterheads. Second, the routing tables are maintained by the clusterheads to store information about nodes both within and outside the cluster. There are two advantages of maintaining routing tables only in the clusterheads. First, as no two neighboring nodes are clusterheads (as per the link-cluster architecture), there is no need to check the consistency of the routing tables. Second, since all other nodes have significantly less work (they only forward messages), they use much less power than the clusterheads. Therefore, if a clusterhead runs out of power, a neighboring node (that is not a clusterhead) can accept the role of a clusterhead. (Abstract shortened by UMI.)
    • …
    corecore