1,040 research outputs found

    Traffic engineering in ambient networks: challenges and approaches

    Get PDF
    The focus of this paper is on traffic engineering in ambient networks. We describe and categorize different alternatives for making the routing more adaptive to the current traffic situation and discuss the challenges that ambient networks pose on traffic engineering methods. One of the main objectives of traffic engineering is to avoid congestion by controlling and optimising the routing function, or in short, to put the traffic where the capacity is. The main challenge for traffic engineering in ambient networks is to cope with the dynamics of both topology and traffic demands. Mechanisms are needed that can handle traffic load dynamics in scenarios with sudden changes in traffic demand and dynamically distribute traffic to benefit from available resources. Trade-offs between optimality, stability and signaling overhead that are important for traffic engineering methods in the fixed Internet becomes even more critical in a dynamic ambient environment

    Wired/Wireless Compound Networking

    Get PDF
    International audienceThis chapter explores techniques that enable efficient link state routing on compound networks. These techniques rely on the selection and maintenance of a subset of links in the network (i.e. an overlay) along which the different operations of link-state routing can be performed more efficiently. This chapter provides a formal analysis of such techniques, a qualitative evaluation of their specific properties and example applications of such techniques with a standard routing protocol

    Self-stabilizing cluster routing in Manet using link-cluster architecture

    Full text link
    We design a self-stabilizing cluster routing algorithm based on the link-cluster architecture of wireless ad hoc networks. The network is divided into clusters. Each cluster has a single special node, called a clusterhead that contains the routing information about inter and intra-cluster communication. A cluster is comprised of all nodes that choose the corresponding clusterhead as their leader. The algorithm consists of two main tasks. First, the set of special nodes (clusterheads) is elected such that it models the link-cluster architecture: any node belongs to a single cluster, it is within two hops of the clusterhead, it knows the direct neighbor on the shortest path towards the clusterhead, and there exist no two adjacent clusterheads. Second, the routing tables are maintained by the clusterheads to store information about nodes both within and outside the cluster. There are two advantages of maintaining routing tables only in the clusterheads. First, as no two neighboring nodes are clusterheads (as per the link-cluster architecture), there is no need to check the consistency of the routing tables. Second, since all other nodes have significantly less work (they only forward messages), they use much less power than the clusterheads. Therefore, if a clusterhead runs out of power, a neighboring node (that is not a clusterhead) can accept the role of a clusterhead. (Abstract shortened by UMI.)

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Supporting unified distributed management and autonomic decisions: design, implementation and deployment

    Get PDF
    Nowadays, the prevailing use of networks based on traditional centralized management systems reflects on a fast increase of the management costs. The growth in the number of network equipments and services reinforces the need to distribute the management responsibilities throughout the network devices. In this approach, each device executes common network management functionalities, being part of the overall network management platform. In this paper, we present a Unified Distributed Network Management (UDNM) framework that provides a unified (wired and wireless) management network solution, where further different network services can take part of this infrastructure, e.g., flow monitoring, accurate routing decisions, distributed policies dissemination, etc. This framework is divided in two main components: (A) Situation awareness, which sets up initial information through bootstrapping, discovery, fault-management process and exchange of management information; (B) Autonomic Decision System (ADS) that performs distributed decisions in the network with incomplete information. We deploy the UDNM framework in a testbed which involves two cities ( ≈ ≈ 250 km between), different standards (IEEE 802.3, IEEE 802.11 and IEEE 802.16e) and network technologies, such as, wired virtual grid, wireless ad-hoc gateways, ad-hoc mobile access devices. The UDNM framework integrates management functionalities into the managed devices, proving to be a lightweight and easy-respond framework. The performance analysis shows that the UDNM framework is feasible to unify devices management functionalities and to take accurate decisions on top of a real network.info:eu-repo/semantics/publishedVersio

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed
    • 

    corecore