25,291 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Coalition Formation Games for Distributed Cooperation Among Roadside Units in Vehicular Networks

    Get PDF
    Vehicle-to-roadside (V2R) communications enable vehicular networks to support a wide range of applications for enhancing the efficiency of road transportation. While existing work focused on non-cooperative techniques for V2R communications between vehicles and roadside units (RSUs), this paper investigates novel cooperative strategies among the RSUs in a vehicular network. We propose a scheme whereby, through cooperation, the RSUs in a vehicular network can coordinate the classes of data being transmitted through V2R communications links to the vehicles. This scheme improves the diversity of the information circulating in the network while exploiting the underlying content-sharing vehicle-to-vehicle communication network. We model the problem as a coalition formation game with transferable utility and we propose an algorithm for forming coalitions among the RSUs. For coalition formation, each RSU can take an individual decision to join or leave a coalition, depending on its utility which accounts for the generated revenues and the costs for coalition coordination. We show that the RSUs can self-organize into a Nash-stable partition and adapt this partition to environmental changes. Simulation results show that, depending on different scenarios, coalition formation presents a performance improvement, in terms of the average payoff per RSU, ranging between 20.5% and 33.2%, relative to the non-cooperative case.Comment: accepted and to appear in IEEE Journal on Selected Areas in Communications (JSAC), Special issue on Vehicular Communications and Network

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table
    corecore