5,995 research outputs found

    Rate-Constrained Wireless Networks with Fading Channels: Interference-Limited and Noise-Limited Regimes

    Full text link
    A network of nn wireless communication links is considered in a Rayleigh fading environment. It is assumed that each link can be active and transmit with a constant power PP or remain silent. The objective is to maximize the number of active links such that each active link can transmit with a constant rate λ\lambda. An upper bound is derived that shows the number of active links scales at most like 1λlogn\frac{1}{\lambda} \log n. To obtain a lower bound, a decentralized link activation strategy is described and analyzed. It is shown that for small values of λ\lambda, the number of supported links by this strategy meets the upper bound; however, as λ\lambda grows, this number becomes far below the upper bound. To shrink the gap between the upper bound and the achievability result, a modified link activation strategy is proposed and analyzed based on some results from random graph theory. It is shown that this modified strategy performs very close to the optimum. Specifically, this strategy is \emph{asymptotically almost surely} optimum when λ\lambda approaches \infty or 0. It turns out the optimality results are obtained in an interference-limited regime. It is demonstrated that, by proper selection of the algorithm parameters, the proposed scheme also allows the network to operate in a noise-limited regime in which the transmission rates can be adjusted by the transmission powers. The price for this flexibility is a decrease in the throughput scaling law by a multiplicative factor of loglogn\log \log n.Comment: Submitted to IEEE Trans. Information Theor

    On the Throughput Maximization in Dencentralized Wireless Networks

    Full text link
    A distributed single-hop wireless network with KK links is considered, where the links are partitioned into a fixed number (MM) of clusters each operating in a subchannel with bandwidth WM\frac{W}{M}. The subchannels are assumed to be orthogonal to each other. A general shadow-fading model, described by parameters (α,ϖ)(\alpha,\varpi), is considered where α\alpha denotes the probability of shadowing and ϖ\varpi (ϖ1\varpi \leq 1) represents the average cross-link gains. The main goal of this paper is to find the maximum network throughput in the asymptotic regime of KK \to \infty, which is achieved by: i) proposing a distributed and non-iterative power allocation strategy, where the objective of each user is to maximize its best estimate (based on its local information, i.e., direct channel gain) of the average network throughput, and ii) choosing the optimum value for MM. In the first part of the paper, the network hroughput is defined as the \textit{average sum-rate} of the network, which is shown to scale as Θ(logK)\Theta (\log K). Moreover, it is proved that in the strong interference scenario, the optimum power allocation strategy for each user is a threshold-based on-off scheme. In the second part, the network throughput is defined as the \textit{guaranteed sum-rate}, when the outage probability approaches zero. In this scenario, it is demonstrated that the on-off power allocation scheme maximizes the throughput, which scales as WαϖlogK\frac{W}{\alpha \varpi} \log K. Moreover, the optimum spectrum sharing for maximizing the average sum-rate and the guaranteed sum-rate is achieved at M=1.Comment: Submitted to IEEE Transactions on Information Theor

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    On the Delay-Throughput Tradeoff in Distributed Wireless Networks

    Full text link
    This paper deals with the delay-throughput analysis of a single-hop wireless network with nn transmitter/receiver pairs. All channels are assumed to be block Rayleigh fading with shadowing, described by parameters (α,ϖ)(\alpha,\varpi), where α\alpha denotes the probability of shadowing and ϖ\varpi represents the average cross-link gains. The analysis relies on the distributed on-off power allocation strategy (i.e., links with a direct channel gain above a certain threshold transmit at full power and the rest remain silent) for the deterministic and stochastic packet arrival processes. It is also assumed that each transmitter has a buffer size of one packet and dropping occurs once a packet arrives in the buffer while the previous packet has not been served. In the first part of the paper, we define a new notion of performance in the network, called effective throughput, which captures the effect of arrival process in the network throughput, and maximize it for different cases of packet arrival process. It is proved that the effective throughput of the network asymptotically scales as lognα^\frac{\log n}{\hat{\alpha}}, with α^αϖ\hat{\alpha} \triangleq \alpha \varpi, regardless of the packet arrival process. In the second part of the paper, we present the delay characteristics of the underlying network in terms of the packet dropping probability. We derive the sufficient conditions in the asymptotic case of nn \to \infty such that the packet dropping probability tend to zero, while achieving the maximum effective throughput of the network. Finally, we study the trade-off between the effective throughput, delay, and packet dropping probability of the network for different packet arrival processes.Comment: Submitted to IEEE Transactions on Information Theory (34 pages
    corecore