2,680 research outputs found

    Distributed Testing of Excluded Subgraphs

    Get PDF
    We study property testing in the context of distributed computing, under the classical CONGEST model. It is known that testing whether a graph is triangle-free can be done in a constant number of rounds, where the constant depends on how far the input graph is from being triangle-free. We show that, for every connected 4-node graph H, testing whether a graph is H-free can be done in a constant number of rounds too. The constant also depends on how far the input graph is from being H-free, and the dependence is identical to the one in the case of testing triangles. Hence, in particular, testing whether a graph is K_4-free, and testing whether a graph is C_4-free can be done in a constant number of rounds (where K_k denotes the k-node clique, and C_k denotes the k-node cycle). On the other hand, we show that testing K_k-freeness and C_k-freeness for k>4 appear to be much harder. Specifically, we investigate two natural types of generic algorithms for testing H-freeness, called DFS tester and BFS tester. The latter captures the previously known algorithm to test the presence of triangles, while the former captures our generic algorithm to test the presence of a 4-node graph pattern H. We prove that both DFS and BFS testers fail to test K_k-freeness and C_k-freeness in a constant number of rounds for k>4

    Faster and Simpler Distributed Algorithms for Testing and Correcting Graph Properties in the CONGEST-Model

    Full text link
    In this paper we present distributed testing algorithms of graph properties in the CONGEST-model [Censor-Hillel et al. 2016]. We present one-sided error testing algorithms in the general graph model. We first describe a general procedure for converting Ï”\epsilon-testers with a number of rounds f(D)f(D), where DD denotes the diameter of the graph, to O((log⁥n)/Ï”)+f((log⁥n)/Ï”)O((\log n)/\epsilon)+f((\log n)/\epsilon) rounds, where nn is the number of processors of the network. We then apply this procedure to obtain an optimal tester, in terms of nn, for testing bipartiteness, whose round complexity is O(ϔ−1log⁥n)O(\epsilon^{-1}\log n), which improves over the poly(ϔ−1log⁥n)poly(\epsilon^{-1} \log n)-round algorithm by Censor-Hillel et al. (DISC 2016). Moreover, for cycle-freeness, we obtain a \emph{corrector} of the graph that locally corrects the graph so that the corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in many places in the case that the graph is far from having the property. In the second part of the paper we design algorithms for testing whether the network is HH-free for any connected HH of size up to four with round complexity of O(ϔ−1)O(\epsilon^{-1}). This improves over the O(ϔ−2)O(\epsilon^{-2})-round algorithms for testing triangle freeness by Censor-Hillel et al. (DISC 2016) and for testing excluded graphs of size 44 by Fraigniaud et al. (DISC 2016). In the last part we generalize the global tester by Iwama and Yoshida (ITCS 2014) of testing kk-path freeness to testing the exclusion of any tree of order kk. We then show how to simulate this algorithm in the CONGEST-model in O(kk2+1⋅ϔ−k)O(k^{k^2+1}\cdot\epsilon^{-k}) rounds

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids

    Testing bounded arboricity

    Full text link
    In this paper we consider the problem of testing whether a graph has bounded arboricity. The family of graphs with bounded arboricity includes, among others, bounded-degree graphs, all minor-closed graph classes (e.g. planar graphs, graphs with bounded treewidth) and randomly generated preferential attachment graphs. Graphs with bounded arboricity have been studied extensively in the past, in particular since for many problems they allow for much more efficient algorithms and/or better approximation ratios. We present a tolerant tester in the sparse-graphs model. The sparse-graphs model allows access to degree queries and neighbor queries, and the distance is defined with respect to the actual number of edges. More specifically, our algorithm distinguishes between graphs that are Ï”\epsilon-close to having arboricity α\alpha and graphs that câ‹…Ï”c \cdot \epsilon-far from having arboricity 3α3\alpha, where cc is an absolute small constant. The query complexity and running time of the algorithm are O~(nm⋅log⁥(1/Ï”)Ï”+n⋅αm⋅(1Ï”)O(log⁥(1/Ï”)))\tilde{O}\left(\frac{n}{\sqrt{m}}\cdot \frac{\log(1/\epsilon)}{\epsilon} + \frac{n\cdot \alpha}{m} \cdot \left(\frac{1}{\epsilon}\right)^{O(\log(1/\epsilon))}\right) where nn denotes the number of vertices and mm denotes the number of edges. In terms of the dependence on nn and mm this bound is optimal up to poly-logarithmic factors since Ω(n/m)\Omega(n/\sqrt{m}) queries are necessary (and α=O(m))\alpha = O(\sqrt{m})). We leave it as an open question whether the dependence on 1/Ï”1/\epsilon can be improved from quasi-polynomial to polynomial. Our techniques include an efficient local simulation for approximating the outcome of a global (almost) forest-decomposition algorithm as well as a tailored procedure of edge sampling

    Distributed Detection of Cycles

    Full text link
    Distributed property testing in networks has been introduced by Brakerski and Patt-Shamir (2011), with the objective of detecting the presence of large dense sub-networks in a distributed manner. Recently, Censor-Hillel et al. (2016) have shown how to detect 3-cycles in a constant number of rounds by a distributed algorithm. In a follow up work, Fraigniaud et al. (2016) have shown how to detect 4-cycles in a constant number of rounds as well. However, the techniques in these latter works were shown not to generalize to larger cycles CkC_k with k≄5k\geq 5. In this paper, we completely settle the problem of cycle detection, by establishing the following result. For every k≄3k\geq 3, there exists a distributed property testing algorithm for CkC_k-freeness, performing in a constant number of rounds. All these results hold in the classical CONGEST model for distributed network computing. Our algorithm is 1-sided error. Its round-complexity is O(1/Ï”)O(1/\epsilon) where ϔ∈(0,1)\epsilon\in(0,1) is the property testing parameter measuring the gap between legal and illegal instances
    • 

    corecore