440,426 research outputs found

    Optimal Number, Location, and Size of Distributed Generators in Distribution Systems by Symbiotic Organism Search Based Method

    Get PDF
    This paper proposes an approach based on the Symbiotic Organism Search (SOS) for optimal determining sizing, siting, and number of Distributed Generations (DG) in distribution systems. The objective of the problem is to minimize the power loss of the system subject to the equality and inequality constraints such as power balance, bus voltage limits, DG capacity limits, and DG penetration limit. The SOS approach is defined as the symbiotic relationship observed between two organisms in an ecosystem, which does not need the control parameters like other meta-heuristic algorithms in the literature. For the implementation of the proposed method to the problem, an integrated approach of Loss Sensitivity Factor (LSF) is used to determine the optimal location for installation of DG units, and SOS is used to find the optimal size of DG units. The proposed method has been tested on IEEE 33-bus, 69-bus, and 118-bus radial distribution systems. The obtained results from the SOS algorithm have been compared to those of other methods in the literature. The simulated results have demonstrated that the proposed SOS method has a very good performance and effectiveness for the problem of optimal placement of DG units in distribution systems

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Analysis of the applicability of singlemode optical fibers for measurement of deformation with distributed systems BOTDR

    Get PDF
    Distributed optical fiber sensors allow monitoring physical effects across the whole cable. The paper presents results obtained from the performed tests and shows that single mode fibers can provide analyses of the deformation changes, when distributed optical systems BOTDR used. We used standard optical fiber G.652.D with primary and secondary protected layers and specialized cable SMC-V4 designed for this purpose. The aim was to compare the deformation sensitivity and determine which fiber types are the best to use. We deformed the fiber in the longitudinal and transverse directions and mechanically stressed in orthogonal directions to find how to localize optical fibers. They could be deployed in real use. For achieving optimal results of mechanical changes and acting forces, sensor fibers have to be located carefully

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)
    corecore