1,315 research outputs found

    Subgradient-Free Stochastic Optimization Algorithm for Non-smooth Convex Functions over Time-Varying Networks

    Full text link
    In this paper we consider a distributed stochastic optimization problem without the gradient/subgradient information for the local objective functions, subject to local convex constraints. The objective functions may be non-smooth and observed with stochastic noises, and the network for the distributed design is time-varying. By adding the stochastic dithers into the local objective functions and constructing the randomized differences motivated by the Kiefer-Wolfowitz algorithm, we propose a distributed subgradient-free algorithm to find the global minimizer with local observations. Moreover, we prove that the consensus of estimates and global minimization can be achieved with probability one over the time-varying network, and then obtain the convergence rate of the mean average of estimates as well. Finally, we give a numerical example to illustrate the effectiveness of the proposed algorithm

    Distributed Subgradient Projection Algorithm over Directed Graphs: Alternate Proof

    Full text link
    We propose Directed-Distributed Projected Subgradient (D-DPS) to solve a constrained optimization problem over a multi-agent network, where the goal of agents is to collectively minimize the sum of locally known convex functions. Each agent in the network owns only its local objective function, constrained to a commonly known convex set. We focus on the circumstance when communications between agents are described by a \emph{directed} network. The D-DPS combines surplus consensus to overcome the asymmetry caused by the directed communication network. The analysis shows the convergence rate to be O(lnkk)O(\frac{\ln k}{\sqrt{k}}).Comment: Disclaimer: This manuscript provides an alternate approach to prove the results in \textit{C. Xi and U. A. Khan, Distributed Subgradient Projection Algorithm over Directed Graphs, in IEEE Transactions on Automatic Control}. The changes, colored in blue, result into a tighter result in Theorem~1". arXiv admin note: text overlap with arXiv:1602.0065

    Privacy Preservation in Distributed Subgradient Optimization Algorithms

    Full text link
    Privacy preservation is becoming an increasingly important issue in data mining and machine learning. In this paper, we consider the privacy preserving features of distributed subgradient optimization algorithms. We first show that a well-known distributed subgradient synchronous optimization algorithm, in which all agents make their optimization updates simultaneously at all times, is not privacy preserving in the sense that the malicious agent can learn other agents' subgradients asymptotically. Then we propose a distributed subgradient projection asynchronous optimization algorithm without relying on any existing privacy preservation technique, where agents can exchange data between neighbors directly. In contrast to synchronous algorithms, in the new asynchronous algorithm agents make their optimization updates asynchronously. The introduced projection operation and asynchronous optimization mechanism can guarantee that the proposed asynchronous optimization algorithm is privacy preserving. Moreover, we also establish the optimal convergence of the newly proposed algorithm. The proposed privacy preservation techniques shed light on developing other privacy preserving distributed optimization algorithms

    Distributed Discrete-time Optimization in Multi-agent Networks Using only Sign of Relative State

    Full text link
    This paper proposes distributed discrete-time algorithms to cooperatively solve an additive cost optimization problem in multi-agent networks. The striking feature lies in the use of only the sign of relative state information between neighbors, which substantially differentiates our algorithms from others in the existing literature. We first interpret the proposed algorithms in terms of the penalty method in optimization theory and then perform non-asymptotic analysis to study convergence for static network graphs. Compared with the celebrated distributed subgradient algorithms, which however use the exact relative state information, the convergence speed is essentially not affected by the loss of information. We also study how introducing noise into the relative state information and randomly activated graphs affect the performance of our algorithms. Finally, we validate the theoretical results on a class of distributed quantile regression problems.Comment: Part of this work has been presented in American Control Conference (ACC) 2018, first version posted on arxiv on Sep. 2017, IEEE Transactions on Automatic Control, 201

    Graph Balancing for Distributed Subgradient Methods over Directed Graphs

    Full text link
    We consider a multi agent optimization problem where a set of agents collectively solves a global optimization problem with the objective function given by the sum of locally known convex functions. We focus on the case when information exchange among agents takes place over a directed network and propose a distributed subgradient algorithm in which each agent performs local processing based on information obtained from his incoming neighbors. Our algorithm uses weight balancing to overcome the asymmetries caused by the directed communication network, i.e., agents scale their outgoing information with dynamically updated weights that converge to balancing weights of the graph. We show that both the objective function values and the consensus violation, at the ergodic average of the estimates generated by the algorithm, converge with rate O(logTT)O(\frac{\log T}{\sqrt{T}}), where TT is the number of iterations. A special case of our algorithm provides a new distributed method to compute average consensus over directed graphs

    Distributed Convex Optimization With Coupling Constraints Over Time-Varying Directed Graphs

    Full text link
    This paper considers a distributed convex optimization problem over a time-varying multi-agent network, where each agent has its own decision variables that should be set so as to minimize its individual objective subject to local constraints and global coupling equality constraints. Over directed graphs, a distributed algorithm is proposed that incorporates the push-sum protocol into dual subgradient methods. Under the convexity assumption, the optimality of primal and dual variables, and constraint violations is first established. Then the explicit convergence rates of the proposed algorithm are obtained. Finally, some numerical experiments on the economic dispatch problem are provided to demonstrate the efficacy of the proposed algorithm

    Distributed Multi-Agent Optimization with State-Dependent Communication

    Get PDF
    We study distributed algorithms for solving global optimization problems in which the objective function is the sum of local objective functions of agents and the constraint set is given by the intersection of local constraint sets of agents. We assume that each agent knows only his own local objective function and constraint set, and exchanges information with the other agents over a randomly varying network topology to update his information state. We assume a state-dependent communication model over this topology: communication is Markovian with respect to the states of the agents and the probability with which the links are available depends on the states of the agents. In this paper, we study a projected multi-agent subgradient algorithm under state-dependent communication. The algorithm involves each agent performing a local averaging to combine his estimate with the other agents' estimates, taking a subgradient step along his local objective function, and projecting the estimates on his local constraint set. The state-dependence of the communication introduces significant challenges and couples the study of information exchange with the analysis of subgradient steps and projection errors. We first show that the multi-agent subgradient algorithm when used with a constant stepsize may result in the agent estimates to diverge with probability one. Under some assumptions on the stepsize sequence, we provide convergence rate bounds on a "disagreement metric" between the agent estimates. Our bounds are time-nonhomogeneous in the sense that they depend on the initial starting time. Despite this, we show that agent estimates reach an almost sure consensus and converge to the same optimal solution of the global optimization problem with probability one under different assumptions on the local constraint sets and the stepsize sequence

    On distributed convex optimization under inequality and equality constraints via primal-dual subgradient methods

    Full text link
    We consider a general multi-agent convex optimization problem where the agents are to collectively minimize a global objective function subject to a global inequality constraint, a global equality constraint, and a global constraint set. The objective function is defined by a sum of local objective functions, while the global constraint set is produced by the intersection of local constraint sets. In particular, we study two cases: one where the equality constraint is absent, and the other where the local constraint sets are identical. We devise two distributed primal-dual subgradient algorithms which are based on the characterization of the primal-dual optimal solutions as the saddle points of the Lagrangian and penalty functions. These algorithms can be implemented over networks with changing topologies but satisfying a standard connectivity property, and allow the agents to asymptotically agree on optimal solutions and optimal values of the optimization problem under the Slater's condition.Comment: 44 page

    Distributed Optimization over Directed Graphs with Row Stochasticity and Constraint Regularity

    Full text link
    This paper deals with an optimization problem over a network of agents, where the cost function is the sum of the individual objectives of the agents and the constraint set is the intersection of local constraints. Most existing methods employing subgradient and consensus steps for solving this problem require the weight matrix associated with the network to be column stochastic or even doubly stochastic, conditions that can be hard to arrange in directed networks. Moreover, known convergence analyses for distributed subgradient methods vary depending on whether the problem is unconstrained or constrained, and whether the local constraint sets are identical or nonidentical and compact. The main goals of this paper are: (i) removing the common column stochasticity requirement; (ii) relaxing the compactness assumption, and (iii) providing a unified convergence analysis. Specifically, assuming the communication graph to be fixed and strongly connected and the weight matrix to (only) be row stochastic, a distributed projected subgradient algorithm and its variation are presented to solve the problem for cost functions that are convex and Lipschitz continuous. Based on a regularity assumption on the local constraint sets, a unified convergence analysis is given that can be applied to both unconstrained and constrained problems and without assuming compactness of the constraint sets or an interior point in their intersection. Further, we also establish an upper bound on the absolute objective error evaluated at each agent's available local estimate under a nonincreasing step size sequence. This bound allows us to analyze the convergence rate of both algorithms.Comment: 14 pages, 3 figure

    FROST -- Fast row-stochastic optimization with uncoordinated step-sizes

    Full text link
    In this paper, we discuss distributed optimization over directed graphs, where doubly-stochastic weights cannot be constructed. Most of the existing algorithms overcome this issue by applying push-sum consensus, which utilizes column-stochastic weights. The formulation of column-stochastic weights requires each agent to know (at least) its out-degree, which may be impractical in e.g., broadcast-based communication protocols. In contrast, we describe FROST (Fast Row-stochastic-Optimization with uncoordinated STep-sizes), an optimization algorithm applicable to directed graphs that does not require the knowledge of out-degrees; the implementation of which is straightforward as each agent locally assigns weights to the incoming information and locally chooses a suitable step-size. We show that FROST converges linearly to the optimal solution for smooth and strongly-convex functions given that the largest step-size is positive and sufficiently small.Comment: Submitted for journal publication, currently under revie
    corecore