826 research outputs found

    Provenance : from long-term preservation to query federation and grid reasoning

    Get PDF

    Towards Making Distributed RDF processing FLINker

    Get PDF
    In the last decade, the Resource Description Framework (RDF) has become the de-facto standard for publishing semantic data on the Web. This steady adoption has led to a significant increase in the number and volume of available RDF datasets, exceeding the capabilities of traditional RDF stores. This scenario has introduced severe big semantic data challenges when it comes to managing and querying RDF data at Web scale. Despite the existence of various off-the-shelf Big Data platforms, processing RDF in a distributed environment remains a significant challenge. In this position paper, based on an indepth analysis of the state of the art, we propose to manage large RDF datasets in Flink, a well-known scalable distributed Big Data processing framework. Our approach, which we refer to as FLINKer extends the native graph abstraction of Flink, called Gelly, with RDF graph and SPARQL query processing capabilities

    Application-agnostic Personal Storage for Linked Data

    Get PDF
    Personaalsete andmete ristkasutuse puudumine veebirakenduste vahel on viinud olukorrani, kus kasutajate identiteet ja andmed on hajutatud eri teenusepakkujate vahel. Sellest tulenevalt on suuremad teenusepakkujad, kel on rohkem teenuseid ja kasutajaid,\n\rvĂ€iksematega vĂ”rreldes eelisseisus kasutajate andmete pealt lisandvÀÀrtuse, sh analĂŒĂŒtika, pakkumise seisukohast. Lisaks on sellisel andmete eraldamisel negatiivne mĂ”ju lĂ”ppkasutajatele, kellel on vaja sarnaseid andmeid korduvalt esitada vĂ”i uuendada eri teenusepakkujate juures vaid selleks, et kasutada teenust maksimaalselt. KĂ€esolevas töös kirjeldatakse personaalse andmeruumi disaini ja realisatsiooni, mis lihtsustab andmete jagamist rakenduste vahel. Lahenduses kasutatakse AppScale\n\rrakendusemootori identiteedi infrastruktuuri, millele lisatakse personaalse andmeruumi teenus, millele ligipÀÀsu saab hallata kasutaja ise. Andmeruumi kasutatavus eri kasutuslugude jaoks tagatakse lĂ€bi linkandmete pĂ”himĂ”tete rakendamise.Recent advances in cloud-based applications and services have led to the continuous replacement of traditional desktop applications with corresponding SaaS solutions. These cloud applications are provided by different service providers, and typically manage identity and personal data, such as user’s contact details, of its users by its own means.\n\rAs a result, the identities and personal data of users have been spread over different applications and servers, each capturing a partial snapshot of user data at certain time moment. This, however, has made maintenance of personal data for service providers difficult and resource-consuming. Furthermore, such kind of data segregation has the overall negative effect on the user experience of end-users who need to repeatedly re-enter and maintain in parallel the same data to gain the maximum benefit out of their applications. Finally, from an integration point of view – sealing of user data has led to the adoption of point-to-point integration models between service providers, which limits the evolution of application ecosystems compared to the models with content aggregators and brokers.\n\rIn this thesis, we will develop an application-agnostic personal storage, which allows sharing user data among applications. This will be achieved by extending AppScale app store identity infrastructure with a personal data storage, which can be easily accessed by any application in the cloud and it will be under the control of a user. Usability of data is leveraged via adoption of linked data principles

    Mobile Cloud Support for Semantic-Enriched Speech Recognition in Social Care

    Get PDF
    Nowadays, most users carry high computing power mobile devices where speech recognition is certainly one of the main technologies available in every modern smartphone, although battery draining and application performance (resource shortage) have a big impact on the experienced quality. Shifting applications and services to the cloud may help to improve mobile user satisfaction as demonstrated by several ongoing efforts in the mobile cloud area. However, the quality of speech recognition is still not sufficient in many complex cases to replace the common hand written text, especially when prompt reaction to short-term provisioning requests is required. To address the new scenario, this paper proposes a mobile cloud infrastructure to support the extraction of semantics information from speech recognition in the Social Care domain, where carers have to speak about their patients conditions in order to have reliable notes used afterward to plan the best support. We present not only an architecture proposal, but also a real prototype that we have deployed and thoroughly assessed with different queries, accents, and in presence of load peaks, in our experimental mobile cloud Platform as a Service (PaaS) testbed based on Cloud Foundry

    An Efficient and Scalable Cloud Approach for Managing the Data in the Cloud

    Get PDF
    In spite of late advances in dispersed Resource Description Frame work (RDF) information administration, preparing a lot of RDF information in the cloud is still extremely difficult. Disregarding its apparently straightforward information display, RDF really encodes rich and complex charts blending both case and construction level information. Sharding such information utilizing established systems or dividing the diagram utilizing conventional min-slice calculations prompts extremely wasteful dispersed operations and to a high number of joins. In this paper, we depict DiploCloud, a productive and adaptable conveyed RDF information administration framework for the cloud. In opposition to past methodologies, DiploCloud runs a physiological investigation of both occurrence and blueprint data preceding apportioning the information. In this paper, we depict the design of DiploCloud, its principle information structures, and additionally the new calculations we use to segment and disseminate information. We likewise exhibit a broad assessment of DiploCloud demonstrating that our framework is frequently two requests of greatness speedier than cutting edge frameworks on standard workloads

    frances : cloud-based historical text mining with deep learning and parallel processing

    Get PDF
    frances is an advanced cloud-based text mining digital platform that leverages information extraction, knowledge graphs, natural language processing (NLP), deep learning, and parallel processing techniques. It has been specifically designed to unlock the full potential of historical digital textual collections, such as those from the National Library of Scotland, offering cloud-based capabilities and extended support for complex NLP analyses and data visualizations. frances enables realtime recurrent operational text mining and provides robust capabilities for temporal analysis, accompanied by automatic visualizations for easy result inspection. In this paper, we present the motivation behind the development of frances, emphasizing its innovative design and novel implementation aspects. We also outline future development directions. Additionally, we evaluate the platform through two comprehensive case studies in history and publishing history. Feedback from participants in these studies demonstrates that frances accelerates their work and facilitates rapid testing and dissemination of ideas.Postprin

    An integrative framework for cooperative production resources in smart manufacturing

    Get PDF
    Under the push of Industry 4.0 paradigm modern manufacturing companies are dealing with a significant digital transition, with the aim to better address the challenges posed by the growing complexity of globalized businesses (Hermann, Pentek, & Otto, Design principles for industrie 4.0 scenarios, 2016). One basic principle of this paradigm is that products, machines, systems and business are always connected to create an intelligent network along the entire factory’s value chain. According to this vision, manufacturing resources are being transformed from monolithic entities into distributed components, which are loosely coupled and autonomous but nevertheless provided of the networking and connectivity capabilities enabled by the increasingly widespread Industrial Internet of Things technology. Under these conditions, they become capable of working together in a reliable and predictable manner, collaborating among themselves in a highly efficient way. Such a mechanism of synergistic collaboration is crucial for the correct evolution of any organization ranging from a multi-cellular organism to a complex modern manufacturing system (Moghaddam & Nof, 2017). Specifically of the last scenario, which is the field of our study, collaboration enables involved resources to exchange relevant information about the evolution of their context. These information can be in turn elaborated to make some decisions, and trigger some actions. In this way connected resources can modify their structure and configuration in response to specific business or operational variations (Alexopoulos, Makris, Xanthakis, Sipsas, & Chryssolouris, 2016). Such a model of “social” and context-aware resources can contribute to the realization of a highly flexible, robust and responsive manufacturing system, which is an objective particularly relevant in the modern factories, as its inclusion in the scope of the priority research lines for the H2020 three-year period 2018-2020 can demonstrate (EFFRA, 2016). Interesting examples of these resources are self-organized logistics which can react to unexpected changes occurred in production or machines capable to predict failures on the basis of the contextual information and then trigger adjustments processes autonomously. This vision of collaborative and cooperative resources can be realized with the support of several studies in various fields ranging from information and communication technologies to artificial intelligence. An update state of the art highlights significant recent achievements that have been making these resources more intelligent and closer to the user needs. However, we are still far from an overall implementation of the vision, which is hindered by three major issues. The first one is the limited capability of a large part of the resources distributed within the shop floor to automatically interpret the exchanged information in a meaningful manner (semantic interoperability) (Atzori, Iera, & Morabito, 2010). This issue is mainly due to the high heterogeneity of data model formats adopted by the different resources used within the shop floor (Modoni, Doukas, Terkaj, Sacco, & Mourtzis, 2016). Another open issue is the lack of efficient methods to fully virtualize the physical resources (Rosen, von Wichert, Lo, & Bettenhausen, 2015), since only pairing physical resource with its digital counterpart that abstracts the complexity of the real world, it is possible to augment communication and collaboration capabilities of the physical component. The third issue is a side effect of the ongoing technological ICT evolutions affecting all the manufacturing companies and consists in the continuous growth of the number of threats and vulnerabilities, which can both jeopardize the cybersecurity of the overall manufacturing system (Wells, Camelio, Williams, & White, 2014). For this reason, aspects related with cyber-security should be considered at the early stage of the design of any ICT solution, in order to prevent potential threats and vulnerabilities. All three of the above mentioned open issues have been addressed in this research work with the aim to explore and identify a precise, secure and efficient model of collaboration among the production resources distributed within the shop floor. This document illustrates main outcomes of the research, focusing mainly on the Virtual Integrative Manufacturing Framework for resources Interaction (VICKI), a potential reference architecture for a middleware application enabling semantic-based cooperation among manufacturing resources. Specifically, this framework provides a technological and service-oriented infrastructure offering an event-driven mechanism that dynamically propagates the changing factors to the interested devices. The proposed system supports the coexistence and combination of physical components and their virtual counterparts in a network of interacting collaborative elements in constant connection, thus allowing to bring back the manufacturing system to a cooperative Cyber-physical Production System (CPPS) (Monostori, 2014). Within this network, the information coming from the productive chain can be promptly and seamlessly shared, distributed and understood by any actor operating in such a context. In order to overcome the problem of the limited interoperability among the connected resources, the framework leverages a common data model based on the Semantic Web technologies (SWT) (Berners-Lee, Hendler, & Lassila, 2001). The model provides a shared understanding on the vocabulary adopted by the distributed resources during their knowledge exchange. In this way, this model allows to integrate heterogeneous data streams into a coherent semantically enriched scheme that represents the evolution of the factory objects, their context and their smart reactions to all kind of situations. The semantic model is also machine-interpretable and re-usable. In addition to modeling, the virtualization of the overall manufacturing system is empowered by the adoption of an agent-based modeling, which contributes to hide and abstract the control functions complexity of the cooperating entities, thus providing the foundations to achieve a flexible and reconfigurable system. Finally, in order to mitigate the risk of internal and external attacks against the proposed infrastructure, it is explored the potential of a strategy based on the analysis and assessment of the manufacturing systems cyber-security aspects integrated into the context of the organization’s business model. To test and validate the proposed framework, a demonstration scenarios has been identified, which are thought to represent different significant case studies of the factory’s life cycle. To prove the correctness of the approach, the validation of an instance of the framework is carried out within a real case study. Moreover, as for data intensive systems such as the manufacturing system, the quality of service (QoS) requirements in terms of latency, efficiency, and scalability are stringent, an evaluation of these requirements is needed in a real case study by means of a defined benchmark, thus showing the impact of the data storage, of the connected resources and of their requests

    Linked Data based Health Information Representation, Visualization and Retrieval System on the Semantic Web

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.To better facilitate health information dissemination, using flexible ways to represent, query and visualize health data becomes increasingly important. Semantic Web technologies, which provide a common framework by allowing data to be shared and reused between applications, can be applied to the management of health data. Linked open data - a new semantic web standard to publish and link heterogonous data- allows not only human, but also machine to brows data in unlimited way. Through a use case of world health organization HIV data of sub Saharan Africa - which is severely affected by HIV epidemic, this thesis built a linked data based health information representation, querying and visualization system. All the data was represented with RDF, by interlinking it with other related datasets, which are already on the cloud. Over all, the system have more than 21,000 triples with a SPARQL endpoint; where users can download and use the data and – a SPARQL query interface where users can put different type of query and retrieve the result. Additionally, It has also a visualization interface where users can visualize the SPARQL result with a tool of their preference. For users who are not familiar with SPARQL queries, they can use the linked data search engine interface to search and browse the data. From this system we can depict that current linked open data technologies have a big potential to represent heterogonous health data in a flexible and reusable manner and they can serve in intelligent queries, which can support decision-making. However, in order to get the best from these technologies, improvements are needed both at the level of triple stores performance and domain-specific ontological vocabularies
    • 

    corecore