2,752 research outputs found

    Towards Spatial Queries over Phenomena in Sensor Networks

    Get PDF
    Today, technology developments enable inexpensive production and deployment of tiny sensing and computing nodes. Networked through wireless radio, such senor nodes form a new platform, wireless sensor networks, which provide novel ability to monitor spatiotemporally continuous phenomena. By treating a wireless sensor network as a database system, users can pose SQL-based queries over phenomena without needing to program detailed sensor node operations. DBMS-internally, intelligent and energyefficient data collection and processing algorithms have to be implemented to support spatial query processing over sensor networks. This dissertation proposes spatial query support for two views of continuous phenomena: field-based and object-based. A field-based view of continuous phenomena depicts them as a value distribution over a geographical area. However, due to the discrete and comparatively sparse distribution of sensor nodes, estimation methods are necessary to generate a field-based query result, and it has to be computed collaboratively ‘in-the-network’ due to energy constraints. This dissertation proposes SWOP, an in-network algorithm using Gaussian Kernel estimation. The key contribution is the use of a small number of Hermite coefficients to approximate the Gaussian Kernel function for sub-clustered sensor nodes, and processes the estimation result efficiently. An object-based view of continuous phenomena is interested in aspects such as the boundary of an ‘interesting region’ (e.g. toxic plume). This dissertation presents NED, which provides object boundary detection in sensor networks. NED encodes partial event estimation results based on confidence levels into optimized, variable length messages exchanged locally among neighboring sensor nodes to save communication cost. Therefore, sensor nodes detect objects and boundaries based on moving averages to eliminate noise effects and enhance detection quality. Furthermore, the dissertation proposes the SNAKE-based approach, which uses deformable curves to track the spatiotemporal changes of such objects incrementally in sensor networks. In the proposed algorithm, only neighboring nodes exchange messages to maintain the curve structures. Based on in-network tracking of deformable curves, other types of spatial and spatiotemporal properties of objects, such as area, can be provided by the sensor network. The experimental results proved that our approaches are resource friendly within the constrained sensor networks, while providing high quality query results

    Dynamic Decomposition of Spatiotemporal Neural Signals

    Full text link
    Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals

    Failure-Aware Cascaded Suppression in Wireless Sensor Networks

    Full text link

    A Distributed Intelligent Sensing Approach for Environmental Monitoring Applications

    Get PDF
    Scientific reports from around the world present us with the undeniable fact that the global ecosystem is undergoing severe change. As this shift accelerates, it is ever more critical that we are able to quantify the local effects of such changes, and further, their implications, from our daily life to the biological processes that put food on our tables. In this thesis, we study the application of sensor network technology to the observation and estimation of highly local phenomena---specifically at a scale between ten to several hundred square meters. Embedding knowledge about the observed process directly into the sensor nodes' behavior via dedicated resource management or control algorithms allows us to deploy dense networks with low power requirements. Ecological systems are notoriously complex. In our work we must thus be highly experimental; it is our highest goal that we construct an approach to environmental monitoring that is not only realistic, but practical for real-world use. Our approach is centered on a commercially available sensor network product, aided by an off-the-shelf quadrotor with minimal customization. We validate our approach through a series of experiments performed from simulation all the way to reality, in deployments lasting days to several months. We motivate the need for local data via two case studies examining physical phenomena. First, employing novel modalities, we study the eclosion of a common agricultural pest. We present our efforts to acquire data that is more local than commonly employed methods, culminating in a six month deployment in a Swiss apple orchard. Next, we apply a environmental fluid dynamics model to enable the estimation of sensible heat flux using an inexpensive sensor. We integrate the sensor with a wireless sensor network and validate its capabilities in a short-term deployment. Acquiring meaningful data on a local scale requires that we advance the state of the art in multiple aspects. Static sensor networks present a classical tension between resolution, autonomy, and accuracy. We explore the performance of algorithms aimed at providing all three, showing explicitly what is required to implement these approaches for real-world applications in an autonomous deployment under uncontrolled conditions. Eventually, spatial resolution is limited by network density. Such limits may be overcome by the use of mobile sensors. We explore the use of an off-the-shelf quadrotor, equipped with environmental sensors, as an additional element in system of heterogeneous sensing nodes. Through a series of indoor and outdoor experiments, we quantify the contribution of a such a mobile sensor, and various strategies for planning its path

    Performance assessment of real-time data management on wireless sensor networks

    Get PDF
    Technological advances in recent years have allowed the maturity of Wireless Sensor Networks (WSNs), which aim at performing environmental monitoring and data collection. This sort of network is composed of hundreds, thousands or probably even millions of tiny smart computers known as wireless sensor nodes, which may be battery powered, equipped with sensors, a radio transceiver, a Central Processing Unit (CPU) and some memory. However due to the small size and the requirements of low-cost nodes, these sensor node resources such as processing power, storage and especially energy are very limited. Once the sensors perform their measurements from the environment, the problem of data storing and querying arises. In fact, the sensors have restricted storage capacity and the on-going interaction between sensors and environment results huge amounts of data. Techniques for data storage and query in WSN can be based on either external storage or local storage. The external storage, called warehousing approach, is a centralized system on which the data gathered by the sensors are periodically sent to a central database server where user queries are processed. The local storage, in the other hand called distributed approach, exploits the capabilities of sensors calculation and the sensors act as local databases. The data is stored in a central database server and in the devices themselves, enabling one to query both. The WSNs are used in a wide variety of applications, which may perform certain operations on collected sensor data. However, for certain applications, such as real-time applications, the sensor data must closely reflect the current state of the targeted environment. However, the environment changes constantly and the data is collected in discreet moments of time. As such, the collected data has a temporal validity, and as time advances, it becomes less accurate, until it does not reflect the state of the environment any longer. Thus, these applications must query and analyze the data in a bounded time in order to make decisions and to react efficiently, such as industrial automation, aviation, sensors network, and so on. In this context, the design of efficient real-time data management solutions is necessary to deal with both time constraints and energy consumption. This thesis studies the real-time data management techniques for WSNs. It particularly it focuses on the study of the challenges in handling real-time data storage and query for WSNs and on the efficient real-time data management solutions for WSNs. First, the main specifications of real-time data management are identified and the available real-time data management solutions for WSNs in the literature are presented. Secondly, in order to provide an energy-efficient real-time data management solution, the techniques used to manage data and queries in WSNs based on the distributed paradigm are deeply studied. In fact, many research works argue that the distributed approach is the most energy-efficient way of managing data and queries in WSNs, instead of performing the warehousing. In addition, this approach can provide quasi real-time query processing because the most current data will be retrieved from the network. Thirdly, based on these two studies and considering the complexity of developing, testing, and debugging this kind of complex system, a model for a simulation framework of the real-time databases management on WSN that uses a distributed approach and its implementation are proposed. This will help to explore various solutions of real-time database techniques on WSNs before deployment for economizing money and time. Moreover, one may improve the proposed model by adding the simulation of protocols or place part of this simulator on another available simulator. For validating the model, a case study considering real-time constraints as well as energy constraints is discussed. Fourth, a new architecture that combines statistical modeling techniques with the distributed approach and a query processing algorithm to optimize the real-time user query processing are proposed. This combination allows performing a query processing algorithm based on admission control that uses the error tolerance and the probabilistic confidence interval as admission parameters. The experiments based on real world data sets as well as synthetic data sets demonstrate that the proposed solution optimizes the real-time query processing to save more energy while meeting low latency.Fundação para a Ciência e Tecnologi

    SST: Integrated Fluorocarbon Microsensor System Using Catalytic Modification

    Get PDF
    Selective, sensitive, and reliable sensors are urgently needed to detect air-borne halogenated volatile organic compounds (VOCs). This broad class of compounds includes chlorine, fluorine, bromine, and iodine containing hydrocarbons used as solvents, refrigerants, herbicides, and more recently as chemical warfare agents (CWAs). It is important to be able to detect very low concentrations of halocarbon solvents and insecticides because of their acute health effects even in very low concentrations. For instance, the nerve agent sarin (isopropyl methylphosphonofluoridate), first developed as an insecticide by German chemists in 1938, is so toxic that a ten minute exposure at an airborne concentration of only 65 parts per billion (ppb) can be fatal. Sarin became a household term when religious cult members on Tokyo subway trains poisoned over 5,500 people, killing 12. Sarin and other CWAs remain a significant threat to the health and safety of the general public. The goal of this project is to design a sensor system to detect and identify the composition and concentration of fluorinated VOCs. The system should be small, robust, compatible with metal oxide semiconductor (MOS) technology, cheap, if produced in large scale, and has the potential to be versatile in terms of low power consumption, detection of other gases, and integration in a portable system. The proposed VOC sensor system has three major elements that will be integrated into a microreactor flow cell: a temperature-programmable microhotplate array/reactor system which serves as the basic sensor platform; an innovative acoustic wave sensor, which detects material removal (instead of deposition) to verify and quantify the presence of fluorine; and an intelligent method, support vector machines, that will analyze the complex and high dimensional data furnished by the sensor system. The superior and complementary aspects of the three elements will be carefully integrated to create a system which is more sensitive and selective than other CWA detection systems that are commercially available or described in the research literature. While our sensor system will be developed to detect fluorinated VOCs, it can be adapted for other applications in which a target analyte can be catalytically converted for selective detection. Therefore, this investigation will examine the relationships between individual sensor element performance and joint sensor platform performance, integrated with state-of-the-art data analysis techniques. During development of the sensor system, the investigators will consider traditional reactor design concepts such as mass transfer and residence time effects, and will apply them to the emerging field of microsystems. The proposed research will provide the fundamental basis and understanding for examining multifunctional sensor platforms designed to provide extreme selectivity to targeted molecules. The project will involve interdisciplinary researchers and students and will connect to K-12 and RET programs for underrepresented students from rural areas

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included
    • …
    corecore