145 research outputs found

    Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images

    Get PDF
    This paper deals with the application of distributed source coding (DSC) theory to remote sensing image compression. Although DSC exhibits a significant potential in many application fields, up till now the results obtained on real signals fall short of the theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of DSC for lossless image compression carried out onboard a remote platform. We first provide a brief overview of DSC of correlated information sources. We then focus on onboard lossless image compression, and apply DSC techniques in order to reduce the complexity of the onboard encoder, at the expense of the decoder's, by exploiting the correlation of different bands of a hyperspectral dataset. Specifically, we propose two different compression schemes, one based on powerful binary error-correcting codes employed as source codes, and one based on simpler multilevel coset codes. The performance of both schemes is evaluated on a few AVIRIS scenes, and is compared with other state-of-the-art 2D and 3D coders. Both schemes turn out to achieve competitive compression performance, and one of them also has reduced complexity. Based on these results, we highlight the main issues that are still to be solved to further improve the performance of DSC-based remote sensing systems

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding

    Adaptive multispectral GPU accelerated architecture for Earth Observation satellites

    Get PDF
    In recent years the growth in quantity, diversity and capability of Earth Observation (EO) satellites, has enabled increase’s in the achievable payload data dimensionality and volume. However, the lack of equivalent advancement in downlink technology has resulted in the development of an onboard data bottleneck. This bottleneck must be alleviated in order for EO satellites to continue to efficiently provide high quality and increasing quantities of payload data. This research explores the selection and implementation of state-of-the-art multidimensional image compression algorithms and proposes a new onboard data processing architecture, to help alleviate the bottleneck and increase the data throughput of the platform. The proposed new system is based upon a backplane architecture to provide scalability with different satellite platform sizes and varying mission’s objectives. The heterogeneous nature of the architecture allows benefits of both Field Programmable Gate Array (FPGA) and Graphical Processing Unit (GPU) hardware to be leveraged for maximised data processing throughput

    Constant-SNR, rate control and entropy coding for predictive lossy hyperspectral image compression

    Get PDF
    Predictive lossy compression has been shown to represent a very flexible framework for lossless and lossy onboard compression of multispectral and hyperspectral images with quality and rate control. In this paper, we improve predictive lossy compression in several ways, using a standard issued by the Consultative Committee on Space Data Systems, namely CCSDS-123, as an example of application. First, exploiting the flexibility in the error control process, we propose a constant-signal-to-noise-ratio algorithm that bounds the maximum relative error between each pixel of the reconstructed image and the corresponding pixel of the original image. This is very useful to avoid low-energy areas of the image being affected by large errors. Second, we propose a new rate control algorithm that has very low complexity and provides performance equal to or better than existing work. Third, we investigate several entropy coding schemes that can speed up the hardware implementation of the algorithm and, at the same time, improve coding efficiency. These advances make predictive lossy compression an extremely appealing framework for onboard systems due to its simplicity, flexibility, and coding efficiency

    Information-theoretic assessment of on-board near-lossless compression of hyperspectral data

    Get PDF
    A rate-distortion model to measure the impact of near-lossless compression of raw data, that is, compression with user-defined maximum absolute error, on the information avail- able once the compressed data have been received and decompressed is proposed. Such a model requires the original uncompressed raw data and their measured noise variances. Advanced near- lossless methods are exploited only to measure the entropy of the datasets but are not required for on-board compression. In substance, the acquired raw data are regarded as a noisy realization of a noise-free spectral information source. The useful spectral information at the decoder is the mutual information between the unknown ideal source and the decoded source, which is affected by both instrument noise and compression-induced distortion. Experiments on simulated noisy images, in which the noise-free source and the noise realization are exactly known, show the trend of spectral information versus compression distortion, which in turn is related to the coded bit rate or equivalently to the compression ratio through the rate-distortion characteristic of the encoder used on satellite. Preliminary experiments on airborne visible infrared imaging spec- trometer (AVIRIS) 2006 Yellowstone sequences match the trends of the simulations. The main conclusion that can be drawn is that the noisier the dataset, the lower the CR that can be tolerated, in order to save a prefixed amount of spectral information. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. (DOI: 10.1117/1.JRS.

    Compression of Spectral Images

    Get PDF
    • …
    corecore