4,095 research outputs found

    Scalable Interactive Volume Rendering Using Off-the-shelf Components

    Get PDF
    This paper describes an application of a second generation implementation of the Sepia architecture (Sepia-2) to interactive volu-metric visualization of large rectilinear scalar fields. By employingpipelined associative blending operators in a sort-last configuration a demonstration system with 8 rendering computers sustains 24 to 28 frames per second while interactively rendering large data volumes (1024x256x256 voxels, and 512x512x512 voxels). We believe interactive performance at these frame rates and data sizes is unprecedented. We also believe these results can be extended to other types of structured and unstructured grids and a variety of GL rendering techniques including surface rendering and shadow map-ping. We show how to extend our single-stage crossbar demonstration system to multi-stage networks in order to support much larger data sizes and higher image resolutions. This requires solving a dynamic mapping problem for a class of blending operators that includes Porter-Duff compositing operators

    Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program. II: Wavelength Parallelization

    Get PDF
    We describe an important addition to the parallel implementation of our generalized NLTE stellar atmosphere and radiative transfer computer program PHOENIX. In a previous paper in this series we described data and task parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. These algorithms divided the work spatially or by spectral lines, that is distributing the radial zones, individual spectral lines, or characteristic rays among different processors and employ, in addition task parallelism for logically independent functions (such as atomic and molecular line opacities). For finite, monotonic velocity fields, the radiative transfer equation is an initial value problem in wavelength, and hence each wavelength point depends upon the previous one. However, for sophisticated NLTE models of both static and moving atmospheres needed to accurately describe, e.g., novae and supernovae, the number of wavelength points is very large (200,000--300,000) and hence parallelization over wavelength can lead both to considerable speedup in calculation time and the ability to make use of the aggregate memory available on massively parallel supercomputers. Here, we describe an implementation of a pipelined design for the wavelength parallelization of PHOENIX, where the necessary data from the processor working on a previous wavelength point is sent to the processor working on the succeeding wavelength point as soon as it is known. Our implementation uses a MIMD design based on a relatively small number of standard MPI library calls and is fully portable between serial and parallel computers.Comment: AAS-TeX, 15 pages, full text with figures available at ftp://calvin.physast.uga.edu/pub/preprints/Wavelength-Parallel.ps.gz ApJ, in pres

    Performance Evaluation of Specialized Hardware for Fast Global Operations on Distributed Memory Multicomputers

    Get PDF
    Workstation cluster multicomputers are increasingly being applied for solving scientific problems that require massive computing power. Parallel Virtual Machine (PVM) is a popular message-passing model used to program these clusters. One of the major performance limiting factors for cluster multicomputers is their inefficiency in performing parallel program operations involving collective communications. These operations include synchronization, global reduction, broadcast/multicast operations and orderly access to shared global variables. Hall has demonstrated that a .secondary network with wide tree topology and centralized coordination processors (COP) could improve the performance of global operations on a variety of distributed architectures [Hall94a]. My hypothesis was that the efficiency of many PVM applications on workstation clusters could be significantly improved by utilizing a COP system for collective communication operations. To test my hypothesis, I interfaced COP system with PVM. The interface software includes a virtual memory-mapped secondary network interface driver, and a function library which allows to use COP system in place of PVM function calls in application programs. My implementation makes it possible to easily port any existing PVM applications to perform fast global operations using the COP system. To evaluate the performance improvements of using a COP system, I measured cost of various PVM global functions, derived the cost of equivalent COP library global functions, and compared the results. To analyze the cost of global operations on overall execution time of applications, I instrumented a complex molecular dynamics PVM application and performed measurements. The measurements were performed for a sample cluster size of 5 and for message sizes up to 16 kilobytes. The comparison of PVM and COP system global operation performance clearly demonstrates that the COP system can speed up a variety of global operations involving small-to-medium sized messages by factors of 5-25. Analysis of the example application for a sample cluster size of 5 show that speedup provided by my global function libraries and the COP system reduces overall execution time for this and similar applications by above 1.5 times. Additionally, the performance improvement seen by applications increases as the cluster size increases, thus providing a scalable solution for performing global operations

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given

    Analytical Modeling of High Performance Reconfigurable Computers: Prediction and Analysis of System Performance.

    Get PDF
    The use of a network of shared, heterogeneous workstations each harboring a Reconfigurable Computing (RC) system offers high performance users an inexpensive platform for a wide range of computationally demanding problems. However, effectively using the full potential of these systems can be challenging without the knowledge of the system’s performance characteristics. While some performance models exist for shared, heterogeneous workstations, none thus far account for the addition of Reconfigurable Computing systems. This dissertation develops and validates an analytic performance modeling methodology for a class of fork-join algorithms executing on a High Performance Reconfigurable Computing (HPRC) platform. The model includes the effects of the reconfigurable device, application load imbalance, background user load, basic message passing communication, and processor heterogeneity. Three fork-join class of applications, a Boolean Satisfiability Solver, a Matrix-Vector Multiplication algorithm, and an Advanced Encryption Standard algorithm are used to validate the model with homogeneous and simulated heterogeneous workstations. A synthetic load is used to validate the model under various loading conditions including simulating heterogeneity by making some workstations appear slower than others by the use of background loading. The performance modeling methodology proves to be accurate in characterizing the effects of reconfigurable devices, application load imbalance, background user load and heterogeneity for applications running on shared, homogeneous and heterogeneous HPRC resources. The model error in all cases was found to be less than five percent for application runtimes greater than thirty seconds and less than fifteen percent for runtimes less than thirty seconds. The performance modeling methodology enables us to characterize applications running on shared HPRC resources. Cost functions are used to impose system usage policies and the results of vii the modeling methodology are utilized to find the optimal (or near-optimal) set of workstations to use for a given application. The usage policies investigated include determining the computational costs for the workstations and balancing the priority of the background user load with the parallel application. The applications studied fall within the Master-Worker paradigm and are well suited for a grid computing approach. A method for using NetSolve, a grid middleware, with the model and cost functions is introduced whereby users can produce optimal workstation sets and schedules for Master-Worker applications running on shared HPRC resources

    A Single Thread to Fortran Coarray Transition Process for the Control Algorithm in the Space Radiation Code HZETRN

    Get PDF
    Exa-scale computing is the direction by industry and government are going to generate solutions to problems they deem necessary. Computing hardware is being developed to achieve the transition from Peta-scale to Exa-scale with more CPUs (Central Processing Units) that have more cores per CPU and more accelerators (GPGPUs (General Purpose Graphics Processing Units) and MICs (Many Integrated Cores)) per node. To fully utilize the hardware available now and in the future, algorithms must become multi-threaded. There are a few methods to generate multi-threaded software such as MPI (Message Passing Interface) and OpenMP (Multi-Processing) / OpenACC (ACCelerator). This paper concentrates on using Coarray Fortran to convert the Fortran 95 based HZETRN (High Z and Energy TRaNsport) code's control algorithm from a single threaded code to a multithreaded code. The resultant Coarray code was 32.5 times faster (with a theoretical speed-up of 74.5 times) than the single threaded version on the hardware tested, as reliable as the Fortran 95 version, and, as it uses native Fortran, was as maintainable as the Fortran 95 version. The Coarray code can be maintained by the same project engineers and scientists who created the original single threaded code. This transition process can be utilized on a C language based code with a compiler that has the UPC (Universal Parallel C) extensions to C

    Hierarchical Parallelisation of Functional Renormalisation Group Calculations -- hp-fRG

    Get PDF
    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes
    corecore