44,834 research outputs found

    A Comparison of Two Paradigms for Distributed Shared Memory

    Get PDF
    This paper compares two paradigms for Distributed Shared Memory on loosely coupled computing systems: the shared data-object model as used in Orca, a programming language specially designed for loosely coupled computing systems and the Shared Virtual Memory model. For both paradigms two systems are described, one using only point-to-point messages, the other using broadcasting as well. The two paradigms and their implementations are described briefly. Their performances on four applications are compared: the travelling-salesman problem, alpha-beta search, matrix multiplication and the all-pairs shortest paths problem. The relevant measurements were obtained on a system consisting of 10 MC68020 processors connected by an Ethernet. For comparison purposes, the applications have also been run on a system with physical shared memory. In addition, the paper gives measurements for the first two applications above when Remote Procedure Call is used as the communication mechanism. The measurements show that both paradigms can be used efficiently for programming large-grain parallel applications, with significant speed-ups. The structured shared data-object model achieves the highest speed-ups and is easiest to program and to debug. KEYWORDS: Amoeba Distributed shared memory Distributed programming Orc

    Memory-savvy distributed interactive ray tracing

    Get PDF
    Journal ArticleInteractive ray tracing in a cluster environment requires paying close attention to the constraints of a loosely coupled distributed system. To render large scenes interactively, memory limits and network latency must be addressed efficiently. In this paper, we improve previous systems by moving to a page-based distributed shared memory layer, resulting in faster and easier access to a shared memory space. The technique is designed to take advantage of the large virtual memory space provided by 64-bit machines. We also examine task reuse through decentralized load balancing and primitive reorganization to complement the shared memory system. These techniques improve memory coherence and are valuable when physical memory is limited. C-SAF

    Distributed Programming with Shared Data

    Get PDF
    Until recently, at least one thing was clear about parallel programming: tightly coupled (shared memory) machines were programmed in a language based on shared variables and loosely coupled (distributed) systems were programmed using message passing. The explosive growth of research on distributed systems and their languages, however, has led to several new methodologies that blur this simple distinction. Operating system primitives (e.g., problem-oriented shared memory, Shared Virtual Memory, the Agora shared memory) and languages (e.g., Concurrent Prolog, Linda, Emerald) for programming distributed systems have been proposed that support the shared variable paradigm without the presence of physical shared memory. In this paper we will look at the reasons for this evolution, the resemblances and differences among these new proposals, and the key issues in their design and implementation. It turns out that many implementations are based on replication of data. We take this idea one step further, and discuss how automatic replication (initiated by the run time system) can be used as a basis for a new model, called the shared data-object model, whose semantics are similar to the shared variable model. Finally, we discuss the design of a new language for distributed programming, Orca, based on the shared data-object model. 1

    RAMP: RDMA Migration Platform

    Get PDF
    Remote Direct Memory Access (RDMA) can be used to implement a shared storage abstraction or a shared-nothing abstraction for distributed applications. We argue that the shared storage abstraction is overkill for loosely coupled applications and that the shared-nothing abstraction does not leverage all the benefits of RDMA. In this thesis, we propose an alternative abstraction for such applications using a shared-on-demand architecture, and present the RDMA Migration Platform (RAMP). RAMP is a lightweight coordination service for building loosely coupled distributed applications. This thesis describes the RAMP system, its programming model and operations, and evaluates the performance of RAMP using microbenchmarks. Furthermore, we illustrate RAMPs load balancing capabilities with a case study of a loosely coupled application that uses RAMP to balance a partition skew under load

    Functional programming abstractions for weakly consistent systems

    Get PDF
    In recent years, there has been a wide-spread adoption of both multicore and cloud computing. Traditionally, concurrent programmers have relied on the underlying system providing strong memory consistency, where there is a semblance of concurrent tasks operating over a shared global address space. However, providing scalable strong consistency guarantees as the scale of the system grows is an increasingly difficult endeavor. In a multicore setting, the increasing complexity and the lack of scalability of hardware mechanisms such as cache coherence deters scalable strong consistency. In geo-distributed compute clouds, the availability concerns in the presence of partial failures prohibit strong consistency. Hence, modern multicore and cloud computing platforms eschew strong consistency in favor of weakly consistent memory, where each task\u27s memory view is incomparable with the other tasks. As a result, programmers on these platforms must tackle the full complexity of concurrent programming for an asynchronous distributed system. ^ This dissertation argues that functional programming language abstractions can simplify scalable concurrent programming for weakly consistent systems. Functional programming espouses mutation-free programming, and rare mutations when present are explicit in their types. By controlling and explicitly reasoning about shared state mutations, functional abstractions simplify concurrent programming. Building upon this intuition, this dissertation presents three major contributions, each focused on addressing a particular challenge associated with weakly consistent loosely coupled systems. First, it describes A NERIS, a concurrent functional programming language and runtime for the Intel Single-chip Cloud Computer, and shows how to provide an efficient cache coherent virtual address space on top of a non cache coherent multicore architecture. Next, it describes RxCML, a distributed extension of MULTIMLTON and shows that, with the help of speculative execution, synchronous communication can be utilized as an efficient abstraction for programming asynchronous distributed systems. Finally, it presents QUELEA, a programming system for eventually consistent distributed stores, and shows that the choice of correct consistency level for replicated data type operations and transactions can be automated with the help of high-level declarative contracts

    Pipelined genetic propagation

    Get PDF
    © 2015 IEEE.Genetic Algorithms (GAs) are a class of numerical and combinatorial optimisers which are especially useful for solving complex non-linear and non-convex problems. However, the required execution time often limits their application to small-scale or latency-insensitive problems, so techniques to increase the computational efficiency of GAs are needed. FPGA-based acceleration has significant potential for speeding up genetic algorithms, but existing FPGA GAs are limited by the generational approaches inherited from software GAs. Many parts of the generational approach do not map well to hardware, such as the large shared population memory and intrinsic loop-carried dependency. To address this problem, this paper proposes a new hardware-oriented approach to GAs, called Pipelined Genetic Propagation (PGP), which is intrinsically distributed and pipelined. PGP represents a GA solver as a graph of loosely coupled genetic operators, which allows the solution to be scaled to the available resources, and also to dynamically change topology at run-time to explore different solution strategies. Experiments show that pipelined genetic propagation is effective in solving seven different applications. Our PGP design is 5 times faster than a recent FPGA-based GA system, and 90 times faster than a CPU-based GA system

    Towards Loosely-Coupled Programming on Petascale Systems

    Full text link
    We have extended the Falkon lightweight task execution framework to make loosely coupled programming on petascale systems a practical and useful programming model. This work studies and measures the performance factors involved in applying this approach to enable the use of petascale systems by a broader user community, and with greater ease. Our work enables the execution of highly parallel computations composed of loosely coupled serial jobs with no modifications to the respective applications. This approach allows a new-and potentially far larger-class of applications to leverage petascale systems, such as the IBM Blue Gene/P supercomputer. We present the challenges of I/O performance encountered in making this model practical, and show results using both microbenchmarks and real applications from two domains: economic energy modeling and molecular dynamics. Our benchmarks show that we can scale up to 160K processor-cores with high efficiency, and can achieve sustained execution rates of thousands of tasks per second.Comment: IEEE/ACM International Conference for High Performance Computing, Networking, Storage and Analysis (SuperComputing/SC) 200

    Design and Evaluation of a Collective IO Model for Loosely Coupled Petascale Programming

    Full text link
    Loosely coupled programming is a powerful paradigm for rapidly creating higher-level applications from scientific programs on petascale systems, typically using scripting languages. This paradigm is a form of many-task computing (MTC) which focuses on the passing of data between programs as ordinary files rather than messages. While it has the significant benefits of decoupling producer and consumer and allowing existing application programs to be executed in parallel with no recoding, its typical implementation using shared file systems places a high performance burden on the overall system and on the user who will analyze and consume the downstream data. Previous efforts have achieved great speedups with loosely coupled programs, but have done so with careful manual tuning of all shared file system access. In this work, we evaluate a prototype collective IO model for file-based MTC. The model enables efficient and easy distribution of input data files to computing nodes and gathering of output results from them. It eliminates the need for such manual tuning and makes the programming of large-scale clusters using a loosely coupled model easier. Our approach, inspired by in-memory approaches to collective operations for parallel programming, builds on fast local file systems to provide high-speed local file caches for parallel scripts, uses a broadcast approach to handle distribution of common input data, and uses efficient scatter/gather and caching techniques for input and output. We describe the design of the prototype model, its implementation on the Blue Gene/P supercomputer, and present preliminary measurements of its performance on synthetic benchmarks and on a large-scale molecular dynamics application.Comment: IEEE Many-Task Computing on Grids and Supercomputers (MTAGS08) 200

    The Impact of Parallel Processing on Operating Systems

    Get PDF
    The base entity in computer programming is the process or task. The parallelism can be achieved by executing multiple processes on different processors. Distributed systems are managed by distributed operating systems that represent the extension for multiprocessor architectures of multitasking and multiprogramming operating systems.
    corecore