13,658 research outputs found

    Scalable and Reliable Middlebox Deployment

    Get PDF
    Middleboxes are pervasive in modern computer networks providing functionalities beyond mere packet forwarding. Load balancers, intrusion detection systems, and network address translators are typical examples of middleboxes. Despite their benefits, middleboxes come with several challenges with respect to their scalability and reliability. The goal of this thesis is to devise middlebox deployment solutions that are cost effective, scalable, and fault tolerant. The thesis includes three main contributions: First, distributed service function chaining with multiple instances of a middlebox deployed on different physical servers to optimize resource usage; Second, Constellation, a geo-distributed middlebox framework enabling a middlebox application to operate with high performance across wide area networks; Third, a fault tolerant service function chaining system

    An experimental study on latency-aware and self-adaptive service chaining orchestration in distributed NFV and SDN infrastructures

    Get PDF
    Network Function Virtualization (NFV) and Software Defined Networking (SDN) changed radically the way 5G networks will be deployed and services will be delivered to vertical applications (i.e., through dynamic chaining of virtualized functions deployed in distributed clouds to best address latency requirements). In this work, we present a service chaining orchestration system, namely LASH-5G, running on top of an experimental set-up that reproduces a typical 5G network deployment with virtualized functions in geographically distributed edge clouds. LASH-5G is built upon a joint integration effort among different orchestration solutions and cloud deployments and aims at providing latency-aware, adaptive and reliable service chaining orchestration across clouds and network resource domains interconnected through SDN. In this paper, we provide details on how this orchestration system has been deployed and it is operated on top of the experimentation infrastructure provided within the Fed4FIRE+ facility and we present performance results assessing the effectiveness of the proposed orchestration approach

    DRENCH: A Semi-Distributed Resource Management Framework for NFV based Service Function Chaining

    Get PDF
    As networks grow in scale and complexity, the use of Network Function Virtualization (NFV) and the ability to dynamically instantiate network function instances (NFls) allow us to scale out the network's capabilities in response to demand. At the same time, an increasing number of computing resources, deployed closer to users, as well as network equipment are now capable of performing general-purpose computation for NFV. However, NFV management in the presence of Service Function Chaining (SFC) for arbitrary topologies is a challenging task. In this work we argue for the necessity of an algorithmic resource managementframework that captures the involved tradeoffs of NFls minimum workload, load balancing, and flow path stretch. We introduce DRENCH as a low complexity NFV and flow steering management framework. In DRENCH an NFV market is considered where a centralised SDN controller acts as market orchestrator of NFV nodes. Through competition, NFV nodes make flow steering and NFl instantiation/consolidation decisions. DRENCH design enables third party NFV nodes participation while it can coexist with other NFV management solutions. DRENCH orchestrator parameterisation strikes the right balance between path stretch and NFl load balancing, resulting in significantly lower Flow Completion Times, up to 1Ox less, in some cases

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    corecore