64,629 research outputs found

    Distributed Sensing and Estimation Under Communication Constraints

    Full text link

    Distributed Sensing and Estimation Under Communication Constraints

    Get PDF
    In this paper we consider the impact of imperfect communication links on distributed sensing and estimation in mobile networks. First we find optimum sensing regions and sensor positions under communication constraints. We show that the optimum sensor configuration consists of overlapping sensing regions. We then show how the nodes can achieve the optimum configuration in a distributed manner

    On the Design and Analysis of Secure Inference Networks

    Get PDF
    Parallel-topology inference networks consist of spatially-distributed sensing agents that collect and transmit observations to a central node called the fusion center (FC), so that a global inference is made regarding the phenomenon-of-interest (PoI). In this dissertation, we address two types of statistical inference, namely binary-hypothesis testing and scalar parameter estimation in parallel-topology inference networks. We address three different types of security threats in parallel-topology inference networks, namely Eavesdropping (Data-Confidentiality), Byzantine (Data-Integrity) or Jamming (Data-Availability) attacks. In an attempt to alleviate information leakage to the eavesdropper, we present optimal/near-optimal binary quantizers under two different frameworks, namely differential secrecy where the difference in performances between the FC and Eve is maximized, and constrained secrecy where FC’s performance is maximized in the presence of tolerable secrecy constraints. We also propose near-optimal transmit diversity mechanisms at the sensing agents in detection networks in the presence of tolerable secrecy constraints. In the context of distributed inference networks with M-ary quantized sensing data, we propose a novel Byzantine attack model and find optimal attack strategies that minimize KL Divergence at the FC in the presence of both ideal and non-ideal channels. Furthermore, we also propose a novel deviation-based reputation scheme to detect Byzantine nodes in a distributed inference network. Finally, we investigate optimal jamming attacks in detection networks where the jammer distributes its power across the sensing and the communication channels. We also model the interaction between the jammer and a centralized detection network as a complete information zero-sum game. We find closed-form expressions for pure-strategy Nash equilibria and show that both the players converge to these equilibria in a repeated game. Finally, we show that the jammer finds no incentive to employ pure-strategy equilibria, and causes greater impact on the network performance by employing mixed strategies

    Performance Analysis of Cognitive Radio Systems under QoS Constraints and Channel Uncertainty

    Get PDF
    In this paper, performance of cognitive transmission over time-selective flat fading channels is studied under quality of service (QoS) constraints and channel uncertainty. Cognitive secondary users (SUs) are assumed to initially perform channel sensing to detect the activities of the primary users, and then attempt to estimate the channel fading coefficients through training. Energy detection is employed for channel sensing, and different minimum mean-square-error (MMSE) estimation methods are considered for channel estimation. In both channel sensing and estimation, erroneous decisions can be made, and hence, channel uncertainty is not completely eliminated. In this setting, performance is studied and interactions between channel sensing and estimation are investigated. Following the channel sensing and estimation tasks, SUs engage in data transmission. Transmitter, being unaware of the channel fading coefficients, is assumed to send the data at fixed power and rate levels that depend on the channel sensing results. Under these assumptions, a state-transition model is constructed by considering the reliability of the transmissions, channel sensing decisions and their correctness, and the evolution of primary user activity which is modeled as a two-state Markov process. In the data transmission phase, an average power constraint on the secondary users is considered to limit the interference to the primary users, and statistical limitations on the buffer lengths are imposed to take into account the QoS constraints of the secondary traffic. The maximum throughput under these statistical QoS constraints is identified by finding the effective capacity of the cognitive radio channel. Numerical results are provided for the power and rate policies

    Distributed Detection and Estimation in Wireless Sensor Networks

    Full text link
    In this article we consider the problems of distributed detection and estimation in wireless sensor networks. In the first part, we provide a general framework aimed to show how an efficient design of a sensor network requires a joint organization of in-network processing and communication. Then, we recall the basic features of consensus algorithm, which is a basic tool to reach globally optimal decisions through a distributed approach. The main part of the paper starts addressing the distributed estimation problem. We show first an entirely decentralized approach, where observations and estimations are performed without the intervention of a fusion center. Then, we consider the case where the estimation is performed at a fusion center, showing how to allocate quantization bits and transmit powers in the links between the nodes and the fusion center, in order to accommodate the requirement on the maximum estimation variance, under a constraint on the global transmit power. We extend the approach to the detection problem. Also in this case, we consider the distributed approach, where every node can achieve a globally optimal decision, and the case where the decision is taken at a central node. In the latter case, we show how to allocate coding bits and transmit power in order to maximize the detection probability, under constraints on the false alarm rate and the global transmit power. Then, we generalize consensus algorithms illustrating a distributed procedure that converges to the projection of the observation vector onto a signal subspace. We then address the issue of energy consumption in sensor networks, thus showing how to optimize the network topology in order to minimize the energy necessary to achieve a global consensus. Finally, we address the problem of matching the topology of the network to the graph describing the statistical dependencies among the observed variables.Comment: 92 pages, 24 figures. To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201
    • …
    corecore