33,480 research outputs found

    Distributed scheduling based on multi-agent systems and optimization methods

    Get PDF
    The increasing relevance of complex systems in dynamic environments has received special attention during the last decade from the researchers. Such systems need to satisfy products or clients desires, which, after accomplished might change, becoming a very dynamic situation. Currently, decentralized approaches could assist in the automation of dynamic scheduling, based on the distribution of control functions over a swarm network of decision-making entities. Distributed scheduling, in an automatic manner, can be answered by a service coordination architecture of the different schedule components. However, it is necessary to introduce the control layer in the solution, encapsulating an intelligent service that merge agents with optimization methods. Multi-agent systems (MAS) can be combined with several optimization methods to extract the best of the two worlds: the intelligent control, cooperation and autonomy provided by MAS solutions and the optimum offered by optimization methods. The proposal intends to test the intelligent management of the schedule composition quality, in two case studies namely, manufacturing and home health care.FCT - Fundação para a Ciência e a Tecnologia (UID/CEC/00319/2019

    A distributed multi-agent framework for shared resources scheduling

    Get PDF
    Nowadays, manufacturers have to share some of their resources with partners due to the competitive economic environment. The management of the availability periods of shared resources causes a problem because it is achieved by the scheduling systems which assume a local environment where all resources are on the same site. Therefore, distributed scheduling with shared resources is an important research topic in recent years. In this communication, we introduce the architecture and behavior of DSCEP framework (distributed, supervisor, customer, environment, and producer) under shared resources situation with disturbances. We are using a simple example of manufacturing system to illustrate the ability of DSCEP framework to solve the shared resources scheduling problem in complex systems

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore